Spaces:
Running
Running
import gradio as gr | |
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns | |
import pandas as pd | |
from apscheduler.schedulers.background import BackgroundScheduler | |
from huggingface_hub import snapshot_download | |
from src.about import ( | |
CITATION_BUTTON_LABEL, | |
CITATION_BUTTON_TEXT, | |
EVALUATION_QUEUE_TEXT, | |
INTRODUCTION_TEXT, | |
LLM_BENCHMARKS_TEXT, | |
TITLE, | |
) | |
from src.display.css_html_js import custom_css | |
from src.display.utils import ( | |
BENCHMARK_COLS, | |
SPEECH_BENCHMARK_COLS, | |
COLS, | |
COLS_SPEECH, | |
EVAL_COLS, | |
EVAL_TYPES, | |
AutoEvalColumn, | |
AutoEvalColumnSpeech, | |
ModelType, | |
fields, | |
WeightType, | |
Precision, REGION_MAP | |
) | |
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN | |
from src.populate import get_evaluation_queue_df, get_leaderboard_df | |
from src.submission.submit import handle_csv_submission | |
text_sample_path = "src/submission_samples/model_name_text.csv" | |
speech_sample_path = "src/submission_samples/model_name_speech.csv" | |
def restart_space(): | |
API.restart_space(repo_id=REPO_ID) | |
### Space initialisation | |
try: | |
print(EVAL_REQUESTS_PATH) | |
snapshot_download( | |
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, | |
token=TOKEN | |
) | |
except Exception: | |
restart_space() | |
try: | |
print(EVAL_RESULTS_PATH) | |
snapshot_download( | |
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, | |
token=TOKEN | |
) | |
except Exception: | |
restart_space() | |
( | |
finished_eval_queue_df, | |
running_eval_queue_df, | |
pending_eval_queue_df, | |
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS) | |
def init_leaderboard(dataframe, result_type='text'): | |
if dataframe is None or dataframe.empty: | |
raise ValueError("Leaderboard DataFrame is empty or None.") | |
column_class = AutoEvalColumn if result_type == "text" else AutoEvalColumnSpeech | |
return Leaderboard( | |
value=dataframe, | |
datatype=[c.type for c in fields(column_class)], | |
select_columns=SelectColumns( | |
default_selection=[c.name for c in fields(column_class) if c.displayed_by_default], | |
cant_deselect=[c.name for c in fields(column_class) if c.never_hidden], | |
label="Select Columns to Display:", | |
), | |
# search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name], | |
search_columns=[column_class.model.name], | |
hide_columns=[c.name for c in fields(column_class) if c.hidden], | |
filter_columns=[ | |
# ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"), | |
# ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"), | |
# ColumnFilter( | |
# AutoEvalColumn.params.name, | |
# type="slider", | |
# min=0.01, | |
# max=150, | |
# label="Select the number of parameters (B)", | |
# ), | |
# ColumnFilter( | |
# AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True | |
# ), | |
], | |
bool_checkboxgroup_label="Hide models", | |
interactive=False, | |
) | |
leaderboard_dataframes = { | |
region: get_leaderboard_df( | |
EVAL_RESULTS_PATH, | |
EVAL_REQUESTS_PATH, | |
COLS, | |
BENCHMARK_COLS, | |
region if region != "All" else None, | |
result_type="text" | |
) | |
for region in REGION_MAP.values() | |
} | |
leaderboard_dataframes_speech = { | |
region: get_leaderboard_df( | |
EVAL_RESULTS_PATH, | |
EVAL_REQUESTS_PATH, | |
COLS_SPEECH, | |
SPEECH_BENCHMARK_COLS, | |
region if region != "All" else None, | |
result_type="speech" | |
) | |
for region in REGION_MAP.values() | |
} | |
# Preload leaderboard blocks | |
js_switch_code = """ | |
(displayRegion) => { | |
const regionMap = { | |
"All": "All", | |
"Africa": "Africa", | |
"Americas/Oceania": "Americas_Oceania", | |
"Asia (S)": "Asia_S", | |
"Asia (SE)": "Asia_SE", | |
"Asia (W, C)": "Asia_W_C", | |
"Asia (E)": "Asia_E", | |
"Europe (W, N, S)": "Europe_W_N_S", | |
"Europe (E)": "Europe_E" | |
}; | |
const region = regionMap[displayRegion]; | |
document.querySelectorAll('[id^="leaderboard-"]').forEach(el => el.classList.remove("visible")); | |
const target = document.getElementById("leaderboard-" + region); | |
if (target) { | |
target.classList.add("visible"); | |
// π§ Trigger reflow to fix row cutoff | |
void target.offsetHeight; // Trigger reflow | |
target.style.display = "none"; // Hide momentarily | |
requestAnimationFrame(() => { | |
target.style.display = ""; | |
}); | |
} | |
} | |
""" | |
demo = gr.Blocks(css=custom_css) | |
with demo: | |
gr.HTML(TITLE) | |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") | |
with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
with gr.TabItem("π mSTEB Text Benchmark", elem_id="llm-benchmark-tab-table", id=0): | |
with gr.Row(): | |
region_dropdown = gr.Dropdown( | |
choices=list(REGION_MAP.keys()), | |
label="Select Region", | |
value="All", | |
interactive=True, | |
) | |
# Region-specific leaderboard containers | |
for display_name, region_key in REGION_MAP.items(): | |
with gr.Column( | |
elem_id=f"leaderboard-{region_key}", | |
elem_classes=["visible"] if region_key == "All" else [] | |
): | |
init_leaderboard(leaderboard_dataframes[region_key], result_type="text") | |
# JS hook to toggle visible leaderboard | |
region_dropdown.change(None, js=js_switch_code, inputs=[region_dropdown]) | |
with gr.TabItem("π£οΈ mSTEB Speech Benchmark", elem_id="speech-benchmark-tab-table", id=1): | |
with gr.Row(): | |
speech_region_dropdown = gr.Dropdown( | |
choices=list(REGION_MAP.keys()), | |
label="Select Region", | |
value="All", | |
interactive=True, | |
) | |
for display_name, region_key in REGION_MAP.items(): | |
with gr.Column( | |
elem_id=f"speech-leaderboard-{region_key}", | |
elem_classes=["visible"] if region_key == "All" else [] | |
): | |
init_leaderboard(leaderboard_dataframes_speech[region_key], result_type='speech') | |
speech_region_dropdown.change( | |
None, | |
js=js_switch_code.replace("leaderboard-", "speech-leaderboard-"), | |
inputs=[speech_region_dropdown] | |
) | |
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=2): | |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") | |
with gr.TabItem("π Submit here! ", elem_id="llm-benchmark-tab-table", id=3): | |
with gr.Column(): | |
with gr.Row(): | |
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text") | |
with gr.Row(): | |
gr.File( | |
label="π Sample Text CSV", | |
value=text_sample_path, | |
interactive=False, | |
file_types=[".csv"] | |
) | |
gr.File( | |
label="π Sample Speech CSV", | |
value=speech_sample_path, | |
interactive=False, | |
file_types=[".csv"] | |
) | |
with gr.Row(): | |
gr.Markdown("# βοΈβ¨ Submit your model here!", elem_classes="markdown-text") | |
with gr.Column(): | |
model_name_textbox = gr.Textbox(label="Model name") | |
result_type = gr.Radio(choices=["text", "speech"], label="Result Type", value="text") | |
csv_file = gr.File(label="Upload CSV File", file_types=[".csv"]) | |
submit_button = gr.Button("Submit Eval") | |
submission_result = gr.Markdown() | |
submit_button.click( | |
handle_csv_submission, | |
[ | |
model_name_textbox, | |
csv_file, | |
result_type, | |
], | |
submission_result, | |
) | |
with gr.Row(): | |
with gr.Accordion("π Citation", open=False): | |
citation_button = gr.Textbox( | |
value=CITATION_BUTTON_TEXT, | |
label=CITATION_BUTTON_LABEL, | |
lines=20, | |
elem_id="citation-button", | |
show_copy_button=True, | |
) | |
scheduler = BackgroundScheduler() | |
scheduler.add_job(restart_space, "interval", seconds=1800) | |
scheduler.start() | |
demo.queue(default_concurrency_limit=40).launch() | |