vivekvermaiit's picture
json file in results
8fc70f8
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from src.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS,
SPEECH_BENCHMARK_COLS,
COLS,
COLS_SPEECH,
EVAL_COLS,
EVAL_TYPES,
AutoEvalColumn,
AutoEvalColumnSpeech,
ModelType,
fields,
WeightType,
Precision, REGION_MAP
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import handle_csv_submission
text_sample_path = "src/submission_samples/model_name_text.csv"
speech_sample_path = "src/submission_samples/model_name_speech.csv"
def restart_space():
API.restart_space(repo_id=REPO_ID)
### Space initialisation
try:
print(EVAL_REQUESTS_PATH)
snapshot_download(
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30,
token=TOKEN
)
except Exception:
restart_space()
try:
print(EVAL_RESULTS_PATH)
snapshot_download(
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30,
token=TOKEN
)
except Exception:
restart_space()
(
finished_eval_queue_df,
running_eval_queue_df,
pending_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
def init_leaderboard(dataframe, result_type='text'):
if dataframe is None or dataframe.empty:
raise ValueError("Leaderboard DataFrame is empty or None.")
column_class = AutoEvalColumn if result_type == "text" else AutoEvalColumnSpeech
return Leaderboard(
value=dataframe,
datatype=[c.type for c in fields(column_class)],
select_columns=SelectColumns(
default_selection=[c.name for c in fields(column_class) if c.displayed_by_default],
cant_deselect=[c.name for c in fields(column_class) if c.never_hidden],
label="Select Columns to Display:",
),
# search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
search_columns=[column_class.model.name],
hide_columns=[c.name for c in fields(column_class) if c.hidden],
filter_columns=[
# ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
# ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
# ColumnFilter(
# AutoEvalColumn.params.name,
# type="slider",
# min=0.01,
# max=150,
# label="Select the number of parameters (B)",
# ),
# ColumnFilter(
# AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True
# ),
],
bool_checkboxgroup_label="Hide models",
interactive=False,
)
leaderboard_dataframes = {
region: get_leaderboard_df(
EVAL_RESULTS_PATH,
EVAL_REQUESTS_PATH,
COLS,
BENCHMARK_COLS,
region if region != "All" else None,
result_type="text"
)
for region in REGION_MAP.values()
}
leaderboard_dataframes_speech = {
region: get_leaderboard_df(
EVAL_RESULTS_PATH,
EVAL_REQUESTS_PATH,
COLS_SPEECH,
SPEECH_BENCHMARK_COLS,
region if region != "All" else None,
result_type="speech"
)
for region in REGION_MAP.values()
}
# Preload leaderboard blocks
js_switch_code = """
(displayRegion) => {
const regionMap = {
"All": "All",
"Africa": "Africa",
"Americas/Oceania": "Americas_Oceania",
"Asia (S)": "Asia_S",
"Asia (SE)": "Asia_SE",
"Asia (W, C)": "Asia_W_C",
"Asia (E)": "Asia_E",
"Europe (W, N, S)": "Europe_W_N_S",
"Europe (E)": "Europe_E"
};
const region = regionMap[displayRegion];
document.querySelectorAll('[id^="leaderboard-"]').forEach(el => el.classList.remove("visible"));
const target = document.getElementById("leaderboard-" + region);
if (target) {
target.classList.add("visible");
// 🧠 Trigger reflow to fix row cutoff
void target.offsetHeight; // Trigger reflow
target.style.display = "none"; // Hide momentarily
requestAnimationFrame(() => {
target.style.display = "";
});
}
}
"""
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("πŸ… mSTEB Text Benchmark", elem_id="llm-benchmark-tab-table", id=0):
with gr.Row():
region_dropdown = gr.Dropdown(
choices=list(REGION_MAP.keys()),
label="Select Region",
value="All",
interactive=True,
)
# Region-specific leaderboard containers
for display_name, region_key in REGION_MAP.items():
with gr.Column(
elem_id=f"leaderboard-{region_key}",
elem_classes=["visible"] if region_key == "All" else []
):
init_leaderboard(leaderboard_dataframes[region_key], result_type="text")
# JS hook to toggle visible leaderboard
region_dropdown.change(None, js=js_switch_code, inputs=[region_dropdown])
with gr.TabItem("πŸ—£οΈ mSTEB Speech Benchmark", elem_id="speech-benchmark-tab-table", id=1):
with gr.Row():
speech_region_dropdown = gr.Dropdown(
choices=list(REGION_MAP.keys()),
label="Select Region",
value="All",
interactive=True,
)
for display_name, region_key in REGION_MAP.items():
with gr.Column(
elem_id=f"speech-leaderboard-{region_key}",
elem_classes=["visible"] if region_key == "All" else []
):
init_leaderboard(leaderboard_dataframes_speech[region_key], result_type='speech')
speech_region_dropdown.change(
None,
js=js_switch_code.replace("leaderboard-", "speech-leaderboard-"),
inputs=[speech_region_dropdown]
)
with gr.TabItem("πŸ“ About", elem_id="llm-benchmark-tab-table", id=2):
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
with gr.TabItem("πŸš€ Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
with gr.Column():
with gr.Row():
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
with gr.Row():
gr.File(
label="πŸ“„ Sample Text CSV",
value=text_sample_path,
interactive=False,
file_types=[".csv"]
)
gr.File(
label="πŸ“„ Sample Speech CSV",
value=speech_sample_path,
interactive=False,
file_types=[".csv"]
)
with gr.Row():
gr.Markdown("# βœ‰οΈβœ¨ Submit your model here!", elem_classes="markdown-text")
with gr.Column():
model_name_textbox = gr.Textbox(label="Model name")
result_type = gr.Radio(choices=["text", "speech"], label="Result Type", value="text")
csv_file = gr.File(label="Upload CSV File", file_types=[".csv"])
submit_button = gr.Button("Submit Eval")
submission_result = gr.Markdown()
submit_button.click(
handle_csv_submission,
[
model_name_textbox,
csv_file,
result_type,
],
submission_result,
)
with gr.Row():
with gr.Accordion("πŸ“™ Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=20,
elem_id="citation-button",
show_copy_button=True,
)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch()