Spaces:
Sleeping
Sleeping
import math | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
def _init_weights(module, std=0.041666666666666664): | |
if isinstance(module, nn.Linear): | |
module.weight.data.normal_(mean=0.0, std=std) | |
elif isinstance(module, nn.Embedding): | |
module.weight.data.normal_(mean=0.0, std=std) | |
class RMSNorm(nn.Module): | |
def __init__(self, dim, eps=1e-5): | |
super().__init__() | |
self.eps = eps | |
self.weight = nn.Parameter(torch.ones(dim)) | |
def forward(self, x): | |
norm = torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) | |
return x * norm * self.weight | |
class RotaryEmbedding(nn.Module): | |
def __init__(self, dim, max_position_embeddings=2048, base=10000, theta=10000.0): | |
super().__init__() | |
self.dim = dim | |
self.max_position_embeddings = max_position_embeddings | |
self.base = base | |
self.theta = theta | |
inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2).float() / dim)) | |
self.register_buffer("inv_freq", inv_freq) | |
t = torch.arange(self.max_position_embeddings).type_as(self.inv_freq) | |
freqs = torch.einsum("i,j->ij", t, self.inv_freq) | |
emb = torch.cat((freqs, freqs), dim=-1) | |
self.register_buffer("cos_cached", emb.cos()[None, None, :, :]) | |
self.register_buffer("sin_cached", emb.sin()[None, None, :, :]) | |
def forward(self, x, seq_len=None): | |
if seq_len > self.max_position_embeddings: | |
seq_len = self.max_position_embeddings | |
return ( | |
self.cos_cached[:,:,:seq_len,:], | |
self.sin_cached[:,:,:seq_len,:] | |
) | |
def rotate_half(x): | |
"""Rotates half the hidden dims of the input.""" | |
x1, x2 = x.chunk(2, dim=-1) | |
return torch.cat((-x2, x1), dim=-1) | |
def apply_rotary_pos_emb(q, k, cos, sin): | |
# Ensure proper broadcasting | |
cos = cos[:, :, :q.size(2), :] # [batch, 1, seq_len, dim] | |
sin = sin[:, :, :q.size(2), :] # [batch, 1, seq_len, dim] | |
q_embed = (q * cos) + (rotate_half(q) * sin) | |
k_embed = (k * cos) + (rotate_half(k) * sin) | |
return q_embed, k_embed | |
class Attention(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.hidden_size = config["hidden_size"] | |
self.num_attention_heads = config["num_attention_heads"] | |
self.num_key_value_heads = config["num_key_value_heads"] | |
self.head_dim = self.hidden_size // self.num_attention_heads | |
self.q_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False) | |
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) | |
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) | |
self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False) | |
self.kv_cache = None | |
def forward(self, hidden_states, cos, sin, attention_mask=None, use_cache=False): | |
batch_size, seq_length, _ = hidden_states.shape | |
q = self.q_proj(hidden_states) | |
k = self.k_proj(hidden_states) | |
v = self.v_proj(hidden_states) | |
# Reshape for attention computation | |
q = q.view(batch_size, seq_length, self.num_attention_heads, self.head_dim) | |
k = k.view(batch_size, seq_length, self.num_key_value_heads, self.head_dim) | |
v = v.view(batch_size, seq_length, self.num_key_value_heads, self.head_dim) | |
# Transpose for attention computation | |
q = q.transpose(1, 2) # [batch, num_heads, seq_len, head_dim] | |
k = k.transpose(1, 2) # [batch, num_kv_heads, seq_len, head_dim] | |
v = v.transpose(1, 2) # [batch, num_kv_heads, seq_len, head_dim] | |
# Apply rotary embeddings | |
q, k = apply_rotary_pos_emb(q, k, cos, sin) | |
# Repeat k/v heads if num_key_value_heads < num_attention_heads | |
if self.num_key_value_heads != self.num_attention_heads: | |
k = k.repeat_interleave(self.num_attention_heads // self.num_key_value_heads, dim=1) | |
v = v.repeat_interleave(self.num_attention_heads // self.num_key_value_heads, dim=1) | |
# Compute attention | |
attn_weights = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.head_dim) | |
if attention_mask is not None: | |
attn_weights = attn_weights + attention_mask | |
attn_weights = F.softmax(attn_weights, dim=-1) | |
# Compute output | |
output = torch.matmul(attn_weights, v) | |
output = output.transpose(1, 2).contiguous() # [batch, seq_len, num_heads, head_dim] | |
output = output.view(batch_size, seq_length, -1) | |
return self.o_proj(output) | |
class MLP(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.gate_proj = nn.Linear(config["hidden_size"], config["intermediate_size"], bias=False) | |
self.up_proj = nn.Linear(config["hidden_size"], config["intermediate_size"], bias=False) | |
self.down_proj = nn.Linear(config["intermediate_size"], config["hidden_size"], bias=False) | |
self.act_fn = nn.SiLU() | |
def forward(self, x): | |
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) | |
class DecoderLayer(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.self_attn = Attention(config) | |
self.mlp = MLP(config) | |
self.input_layernorm = RMSNorm(config["hidden_size"], eps=config["rms_norm_eps"]) | |
self.post_attention_layernorm = RMSNorm(config["hidden_size"], eps=config["rms_norm_eps"]) | |
def forward(self, hidden_states, cos, sin, attention_mask=None, use_cache=False): | |
residual = hidden_states | |
hidden_states = self.input_layernorm(hidden_states) | |
hidden_states = self.self_attn(hidden_states, cos, sin, attention_mask, use_cache) | |
hidden_states = residual + hidden_states | |
residual = hidden_states | |
hidden_states = self.post_attention_layernorm(hidden_states) | |
hidden_states = self.mlp(hidden_states) | |
hidden_states = residual + hidden_states | |
return hidden_states | |
class SmolLM2(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.embed_tokens = nn.Embedding(config["vocab_size"], config["hidden_size"]) | |
self.layers = nn.ModuleList([DecoderLayer(config) for _ in range(config["num_hidden_layers"])]) | |
self.norm = RMSNorm(config["hidden_size"], eps=config["rms_norm_eps"]) | |
self.rotary_emb = RotaryEmbedding( | |
config["hidden_size"] // config["num_attention_heads"], | |
max_position_embeddings=config["max_position_embeddings"], | |
theta=config.get("rope_theta", 10000.0) | |
) | |
# Initialize weights | |
self.apply(lambda p: _init_weights(p, std=config.get("initializer_range", 0.041666666666666664))) | |
def forward(self, input_ids, attention_mask=None, use_cache=False): | |
hidden_states = self.embed_tokens(input_ids) | |
seq_length = input_ids.shape[1] | |
cos, sin = self.rotary_emb(hidden_states, seq_length) | |
for layer in self.layers: | |
hidden_states = layer(hidden_states, cos, sin, attention_mask, use_cache) | |
hidden_states = self.norm(hidden_states) | |
# Use tied weights for the output projection | |
if self.config.get("tie_word_embeddings", True): | |
logits = F.linear(hidden_states, self.embed_tokens.weight) | |
else: | |
logits = self.lm_head(hidden_states) | |
return logits | |
def generate( | |
self, | |
input_ids, | |
max_length, | |
min_length=None, | |
num_return_sequences=1, | |
pad_token_id=None, | |
do_sample=True, | |
temperature=0.8, | |
top_k=50, | |
top_p=0.95 | |
): | |
self.eval() | |
batch_size = input_ids.shape[0] | |
min_length = min_length if min_length is not None else input_ids.shape[1] | |
# Clear KV cache | |
for layer in self.layers: | |
layer.self_attn.kv_cache = None | |
with torch.no_grad(): | |
for _ in range(max_length - input_ids.shape[1]): | |
outputs = self(input_ids, use_cache=True) | |
next_token_logits = outputs[:, -1, :] | |
# Apply temperature | |
next_token_logits = next_token_logits / temperature | |
# Apply top-k filtering | |
if top_k > 0: | |
indices_to_remove = next_token_logits < torch.topk(next_token_logits, top_k)[0][..., -1, None] | |
next_token_logits[indices_to_remove] = float('-inf') | |
# Apply top-p (nucleus) filtering | |
if top_p < 1.0: | |
sorted_logits, sorted_indices = torch.sort(next_token_logits, descending=True) | |
cumulative_probs = torch.cumsum(torch.softmax(sorted_logits, dim=-1), dim=-1) | |
sorted_indices_to_remove = cumulative_probs > top_p | |
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone() | |
sorted_indices_to_remove[..., 0] = 0 | |
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove) | |
next_token_logits[indices_to_remove] = float('-inf') | |
# Sample from the filtered distribution | |
if do_sample: | |
probs = torch.softmax(next_token_logits, dim=-1) | |
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1) | |
else: | |
next_tokens = torch.argmax(next_token_logits, dim=-1) | |
input_ids = torch.cat([input_ids, next_tokens.unsqueeze(-1)], dim=-1) | |
# Stop if all sequences have hit the pad token | |
if pad_token_id is not None and (next_tokens == pad_token_id).all(): | |
break | |
# Stop if we've reached min_length | |
if input_ids.shape[1] < min_length: | |
continue | |
return input_ids |