File size: 15,563 Bytes
560a8bd
 
4c99d55
560a8bd
4c99d55
 
560a8bd
4c99d55
 
 
 
 
 
 
560a8bd
4c99d55
 
 
 
560a8bd
 
6c1b51e
560a8bd
 
 
 
 
 
 
 
 
 
6c1b51e
 
560a8bd
 
 
 
 
 
 
 
4c99d55
 
 
 
 
27c52f6
560a8bd
 
6c1b51e
f5ff4ae
27c52f6
 
 
 
 
 
 
f5ff4ae
 
37754c7
 
fd803db
 
f5ff4ae
fd803db
f5ff4ae
fd803db
f5ff4ae
27c52f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5ff4ae
560a8bd
 
 
 
 
 
 
 
 
 
dd6bfef
f5ff4ae
dd6bfef
 
 
 
 
 
 
f5ff4ae
44deb2c
 
f5ff4ae
44deb2c
 
 
 
 
fd803db
 
 
44deb2c
 
560a8bd
 
 
 
 
 
 
 
 
 
 
6c1b51e
 
 
 
 
 
 
 
beff22b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd6bfef
27c52f6
 
 
 
 
560a8bd
27c52f6
 
 
 
560a8bd
dd6bfef
 
 
 
 
 
 
c144126
 
 
 
 
 
 
 
 
 
27c52f6
fd803db
27c52f6
dd6bfef
 
 
 
 
 
560a8bd
 
 
 
 
 
 
 
 
27c52f6
 
fd803db
27c52f6
 
 
 
fd803db
27c52f6
 
 
 
 
 
 
fd803db
27c52f6
 
 
d9fe250
 
5e434f3
27c52f6
 
 
 
 
 
 
5e434f3
 
 
 
 
 
 
 
fd803db
 
27c52f6
 
 
 
fd803db
 
37754c7
 
 
 
f5ff4ae
37754c7
 
 
 
 
 
 
560a8bd
 
6b7eab4
c0a9c4e
560a8bd
 
6b7eab4
 
 
560a8bd
 
 
 
 
 
 
 
 
 
 
 
 
dd6bfef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
560a8bd
 
8d274b6
560a8bd
 
 
 
 
 
8d274b6
560a8bd
 
 
 
 
4c99d55
 
 
560a8bd
bacd5ae
 
 
 
8d274b6
bacd5ae
27c52f6
 
 
 
 
 
 
 
 
 
bacd5ae
27c52f6
bacd5ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5ff4ae
 
d9fe250
f5ff4ae
d9fe250
 
 
 
 
 
bacd5ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5ff4ae
 
 
bacd5ae
 
 
 
 
 
 
f5ff4ae
d9fe250
bacd5ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d274b6
bacd5ae
 
 
 
 
f5ff4ae
d9fe250
bacd5ae
 
 
560a8bd
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
import gradio as gr
import pandas as pd
import os

# Load data from CSV files
DATA_DIR = "data"

def load_csv_data(filename):
    """Load data from CSV file"""
    filepath = os.path.join(DATA_DIR, filename)
    if os.path.exists(filepath):
        return pd.read_csv(filepath)
    else:
        return pd.DataFrame()

# Load datasets
CLASSIFICATION_DF = load_csv_data("classification.csv")
DETECTION_DF = load_csv_data("detection.csv")
SEGMENTATION_DF = load_csv_data("segmentation.csv")


def filter_and_search(df, search, datasets, models, organizations, columns):
    filtered = df.copy()

    if search:
        mask = filtered.apply(lambda row: row.astype(str).str.contains(search, case=False).any(), axis=1)
        filtered = filtered[mask]

    if datasets:
        filtered = filtered[filtered["Dataset"].isin(datasets)]
    if models:
        filtered = filtered[filtered["Model"].isin(models)]
    if organizations:
        filtered = filtered[filtered["Organization"].isin(organizations)]

    if columns:
        display_cols = [col for col in columns if col in filtered.columns]
        filtered = filtered[display_cols]

    return filtered


def build_tab(df, name):
    """Build a leaderboard tab from a DataFrame"""
    if df.empty:
        return gr.TabItem(name)

    # Pivot the dataframe to have columns like "Dataset1 (Metric1)", "Dataset1 (Metric2)", etc.
    datasets = sorted(df["Dataset"].unique().tolist())
    models = sorted(df["Model"].unique().tolist())
    organizations = sorted(df["Organization"].unique().tolist())
    metric_cols = [col for col in df.columns if col not in ["Model", "Organization", "Dataset", "Author", "Author Link"]]

    # Create pivoted dataframe
    pivoted_data = []
    for model in models:
        for org in organizations:
            model_org_data = df[(df["Model"] == model) & (df["Organization"] == org)]
            if not model_org_data.empty:
                # Get Author and Author Link from the first entry (they should be the same for model+org)
                author = model_org_data["Author"].values[0]
                author_link = model_org_data["Author Link"].values[0]

                # Format as markdown link if author_link exists
                if pd.notna(author_link) and author_link.strip():
                    author_display = f"[{author}]({author_link})"
                else:
                    author_display = author

                row = {"Model": model, "Organization": org, "Author": author_display}
                for dataset in datasets:
                    dataset_data = model_org_data[model_org_data["Dataset"] == dataset]
                    if not dataset_data.empty:
                        for metric in metric_cols:
                            col_name = f"{dataset} ({metric})"
                            row[col_name] = dataset_data[metric].values[0]
                    else:
                        for metric in metric_cols:
                            col_name = f"{dataset} ({metric})"
                            row[col_name] = "-"
                pivoted_data.append(row)

    pivoted_df = pd.DataFrame(pivoted_data)

    # Build column list for selector
    metric_combo_cols = []
    for dataset in datasets:
        for metric in metric_cols:
            metric_combo_cols.append(f"{dataset} ({metric})")

    all_cols = ["Model", "Organization", "Author"] + metric_combo_cols

    with gr.TabItem(name, elem_id="llm-benchmark-tab-table"):
        with gr.Row():
            with gr.Column(scale=4):
                search_bar = gr.Textbox(
                    label="Search",
                    placeholder="Separate multiple queries with ';'",
                    elem_id="search-bar"
                )

                # Column selector for base columns only (not dataset+metric combos)
                base_cols = ["Model", "Organization", "Author"]
                col_selector = gr.CheckboxGroup(
                    choices=base_cols,
                    value=base_cols,
                    label="Select Columns to Display:",
                    elem_classes="column-select"
                )

                # Set datatype to 'markdown' for Author column to enable clickable links
                datatypes = []
                for col in pivoted_df.columns:
                    if col == "Author":
                        datatypes.append("markdown")
                    else:
                        datatypes.append("str")

                table = gr.Dataframe(
                    value=pivoted_df,
                    elem_id="leaderboard-table",
                    interactive=False,
                    wrap=True,
                    datatype=datatypes
                )

            with gr.Column(scale=1):
                gr.Markdown("**Model types**")
                model_filter = gr.CheckboxGroup(
                    choices=models,
                    value=models,
                    label="",
                    elem_classes="filter-group"
                )

                gr.Markdown("**Organizations**")
                org_filter = gr.CheckboxGroup(
                    choices=organizations,
                    value=organizations,
                    label="",
                    elem_classes="filter-group"
                )

                gr.Markdown("**Datasets**")
                dataset_filter = gr.CheckboxGroup(
                    choices=datasets,
                    value=datasets,
                    label="",
                    elem_classes="filter-group"
                )

                gr.Markdown("**Metrics**")
                metric_filter = gr.CheckboxGroup(
                    choices=metric_cols,
                    value=metric_cols,
                    label="",
                    elem_classes="filter-group"
                )

        def update(search, md, org, dset, metrics, cols):
            filtered = pivoted_df.copy()

            if search:
                mask = filtered.apply(lambda row: row.astype(str).str.contains(search, case=False).any(), axis=1)
                filtered = filtered[mask]

            if md:
                filtered = filtered[filtered["Model"].isin(md)]
            if org:
                filtered = filtered[filtered["Organization"].isin(org)]

            # Build display columns based on selected base columns and dataset/metric filters
            display_cols = []

            # Add selected base columns
            for col in cols:
                if col in base_cols:
                    display_cols.append(col)

            # Add metric columns that match selected datasets and metrics
            for col in metric_combo_cols:
                # Check if this column matches selected datasets and metrics
                col_dataset = col.split(" (")[0]
                col_metric = col.split(" (")[1].rstrip(")")
                if col_dataset in dset and col_metric in metrics:
                    display_cols.append(col)

            filtered = filtered[display_cols]

            return filtered

        search_bar.change(update, [search_bar, model_filter, org_filter, dataset_filter, metric_filter, col_selector], table)
        model_filter.change(update, [search_bar, model_filter, org_filter, dataset_filter, metric_filter, col_selector], table)
        org_filter.change(update, [search_bar, model_filter, org_filter, dataset_filter, metric_filter, col_selector], table)
        dataset_filter.change(update, [search_bar, model_filter, org_filter, dataset_filter, metric_filter, col_selector], table)
        metric_filter.change(update, [search_bar, model_filter, org_filter, dataset_filter, metric_filter, col_selector], table)
        col_selector.change(update, [search_bar, model_filter, org_filter, dataset_filter, metric_filter, col_selector], table)


custom_css = """
.markdown-text {
    font-size: 16px !important;
}

#leaderboard-table {
    margin-top: 15px;
}

#leaderboard-table table {
    width: 100%;
    table-layout: auto;
}

#leaderboard-table thead th {
    font-weight: bold;
    text-align: center;
    padding: 12px 8px;
    white-space: normal;
    word-wrap: break-word;
}

#leaderboard-table tbody td {
    text-align: center;
    padding: 10px 8px;
    white-space: nowrap;
}

#leaderboard-table tbody td:first-child {
    text-align: left;
    font-weight: 500;
    min-width: 120px;
    max-width: 200px;
    white-space: nowrap;
}

#leaderboard-table thead th:first-child {
    text-align: left;
    font-weight: bold;
    min-width: 120px;
    max-width: 200px;
    white-space: nowrap;
}

#leaderboard-table tbody td:nth-child(2),
#leaderboard-table thead th:nth-child(2) {
    text-align: left;
    min-width: 100px;
}

#leaderboard-table tbody td:nth-child(3),
#leaderboard-table thead th:nth-child(3) {
    text-align: left;
    min-width: 120px;
}

/* Style links in Author column */
#leaderboard-table a {
    color: #0066cc;
    text-decoration: none;
}

#leaderboard-table a:hover {
    text-decoration: underline;
}

#search-bar {
    margin-bottom: 0px;
}

#search-bar textarea {
    border: 1px solid #e0e0e0 !important;
    border-radius: 8px !important;
}

.tab-buttons button {
    font-size: 20px;
}

.filter-group {
    margin-bottom: 1em;
}

.filter-group label {
    font-size: 14px;
}

.column-select {
    margin-bottom: 1.5em;
}

.column-select label {
    display: flex;
    flex-wrap: wrap;
    gap: 0.5em;
}

.column-select label > span {
    display: inline-flex;
    align-items: center;
}
"""

TITLE = """<h1 align="center" id="space-title">Mars-Bench Leaderboard</h1>"""

INTRO = """
A comprehensive benchmark for evaluating computer vision models on Mars-specific datasets.
This leaderboard tracks model performance across three key tasks: classification, segmentation, and object detection.
"""

demo = gr.Blocks(css=custom_css, title="Mars-Bench Leaderboard")
with demo:
    gr.HTML(TITLE)
    gr.Markdown(INTRO, elem_classes="markdown-text")

    with gr.Tabs(elem_classes="tab-buttons"):
        build_tab(CLASSIFICATION_DF, "πŸ… Classification")
        build_tab(SEGMENTATION_DF, "πŸ… Segmentation")
        build_tab(DETECTION_DF, "πŸ… Object Detection")

        with gr.TabItem("πŸ“ Submit", elem_id="submit-tab"):
            gr.Markdown("""
            # Submit Your Model Results

            To submit your model's results to Mars-Bench, please provide the following information.
            All submissions will be reviewed before being added to the leaderboard.
            """)

            gr.Markdown("""
            ### How to submit:
            1. Fill out the form below
            2. Click "Generate Submission Text"
            3. Copy the generated text
            4. Go to the [Community tab](https://huggingface.co/spaces/gremlin97/MarsBoard/discussions)
            5. Click "New discussion"
            6. Paste the text and submit

            ---
            """)

            with gr.Row():
                with gr.Column():
                    submit_task = gr.Dropdown(
                        choices=["Classification", "Segmentation", "Object Detection"],
                        label="Task Type",
                        info="Select the task category"
                    )
                    submit_model = gr.Textbox(
                        label="Model Name",
                        placeholder="e.g., ResNet-50",
                        info="Name of your model"
                    )
                    submit_org = gr.Textbox(
                        label="Organization",
                        placeholder="e.g., Microsoft, Google",
                        info="Your organization or affiliation"
                    )
                    submit_dataset = gr.Textbox(
                        label="Dataset",
                        placeholder="e.g., DoMars16, Mars Crater",
                        info="Dataset used for evaluation"
                    )

                with gr.Column():
                    submit_author = gr.Textbox(
                        label="Author",
                        placeholder="e.g., K. He",
                        info="Name of the author"
                    )
                    submit_author_link = gr.Textbox(
                        label="Author Page Link (Optional)",
                        placeholder="https://scholar.google.com/... or https://github.com/...",
                        info="Link to author's Google Scholar, GitHub, or personal page"
                    )
                    submit_metrics = gr.Textbox(
                        label="Metrics (JSON format)",
                        placeholder='{"Accuracy": 95.8, "F1-Score": 94.9}',
                        info="Provide metrics in JSON format",
                        lines=3
                    )
                    submit_paper = gr.Textbox(
                        label="Paper Link (Optional)",
                        placeholder="https://arxiv.org/abs/...",
                        info="Link to your research paper"
                    )
                    submit_code = gr.Textbox(
                        label="Code Repository (Optional)",
                        placeholder="https://github.com/...",
                        info="Link to your code repository"
                    )
                    submit_email = gr.Textbox(
                        label="Contact Email",
                        placeholder="your.email@example.com",
                        info="We'll contact you about your submission"
                    )

            submit_notes = gr.Textbox(
                label="Additional Notes (Optional)",
                placeholder="Training details, hyperparameters, reproduction instructions...",
                lines=4,
                info="Any additional information"
            )

            generate_btn = gr.Button("Generate Submission Text", variant="primary", size="lg")
            submission_output = gr.Textbox(
                label="Copy this text and create a new discussion in the Community tab",
                lines=15,
                interactive=True
            )

            gr.Markdown("""
            We'll review your submission and add it to the leaderboard if approved.
            """)

            def generate_submission_text(task, model, org, dataset, author, author_link, metrics, paper, code, email, notes):
                if not all([task, model, org, dataset, author, metrics, email]):
                    return "❌ Error: Please fill in all required fields (Task Type, Model Name, Organization, Dataset, Author, Metrics, Contact Email)"

                submission_text = f"""## New Model Submission

**Task Type:** {task}
**Model Name:** {model}
**Organization:** {org}
**Dataset:** {dataset}
**Author:** {author}
**Author Page Link:** {author_link if author_link else "N/A"}

### Metrics
```json
{metrics}
```

### Links
- **Paper:** {paper if paper else "N/A"}
- **Code:** {code if code else "N/A"}

### Contact
**Email:** {email}

### Additional Notes
{notes if notes else "N/A"}

---
*Please review this submission for inclusion in Mars-Bench.*
"""
                return submission_text

            generate_btn.click(
                generate_submission_text,
                inputs=[submit_task, submit_model, submit_org, submit_dataset, submit_author,
                       submit_author_link, submit_metrics, submit_paper, submit_code, submit_email, submit_notes],
                outputs=submission_output
            )

if __name__ == "__main__":
    demo.launch()