Spaces:
Running
Running
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Tests official.nlp.albert.export_albert_tfhub.""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import os | |
import numpy as np | |
import tensorflow as tf | |
import tensorflow_hub as hub | |
from official.nlp.albert import configs | |
from official.nlp.albert import export_albert_tfhub | |
class ExportAlbertTfhubTest(tf.test.TestCase): | |
def test_export_albert_tfhub(self): | |
# Exports a savedmodel for TF-Hub | |
albert_config = configs.AlbertConfig( | |
vocab_size=100, | |
embedding_size=8, | |
hidden_size=16, | |
intermediate_size=32, | |
max_position_embeddings=128, | |
num_attention_heads=2, | |
num_hidden_layers=1) | |
bert_model, encoder = export_albert_tfhub.create_albert_model(albert_config) | |
model_checkpoint_dir = os.path.join(self.get_temp_dir(), "checkpoint") | |
checkpoint = tf.train.Checkpoint(model=encoder) | |
checkpoint.save(os.path.join(model_checkpoint_dir, "test")) | |
model_checkpoint_path = tf.train.latest_checkpoint(model_checkpoint_dir) | |
sp_model_file = os.path.join(self.get_temp_dir(), "sp_tokenizer.model") | |
with tf.io.gfile.GFile(sp_model_file, "w") as f: | |
f.write("dummy content") | |
hub_destination = os.path.join(self.get_temp_dir(), "hub") | |
export_albert_tfhub.export_albert_tfhub( | |
albert_config, | |
model_checkpoint_path, | |
hub_destination, | |
sp_model_file=sp_model_file) | |
# Restores a hub KerasLayer. | |
hub_layer = hub.KerasLayer(hub_destination, trainable=True) | |
if hasattr(hub_layer, "resolved_object"): | |
with tf.io.gfile.GFile( | |
hub_layer.resolved_object.sp_model_file.asset_path.numpy()) as f: | |
self.assertEqual("dummy content", f.read()) | |
# Checks the hub KerasLayer. | |
for source_weight, hub_weight in zip(bert_model.trainable_weights, | |
hub_layer.trainable_weights): | |
self.assertAllClose(source_weight.numpy(), hub_weight.numpy()) | |
dummy_ids = np.zeros((2, 10), dtype=np.int32) | |
hub_outputs = hub_layer([dummy_ids, dummy_ids, dummy_ids]) | |
source_outputs = bert_model([dummy_ids, dummy_ids, dummy_ids]) | |
# The outputs of hub module are "pooled_output" and "sequence_output", | |
# while the outputs of encoder is in reversed order, i.e., | |
# "sequence_output" and "pooled_output". | |
encoder_outputs = reversed(encoder([dummy_ids, dummy_ids, dummy_ids])) | |
self.assertEqual(hub_outputs[0].shape, (2, 16)) | |
self.assertEqual(hub_outputs[1].shape, (2, 10, 16)) | |
for source_output, hub_output, encoder_output in zip( | |
source_outputs, hub_outputs, encoder_outputs): | |
self.assertAllClose(source_output.numpy(), hub_output.numpy()) | |
self.assertAllClose(source_output.numpy(), encoder_output.numpy()) | |
if __name__ == "__main__": | |
tf.test.main() | |