Spaces:
Running
Running
# Copyright 2018 Google Inc. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Library which creates datasets.""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
from datasets import imagenet_input | |
from datasets import tiny_imagenet_input | |
def get_dataset(dataset_name, split, batch_size, image_size, is_training): | |
"""Returns dataset. | |
Args: | |
dataset_name: name of the dataset, "imagenet" or "tiny_imagenet". | |
split: name of the split, "train" or "validation". | |
batch_size: size of the minibatch. | |
image_size: size of the one side of the image. Output images will be | |
resized to square shape image_size*image_size. | |
is_training: if True then training preprocessing is done, otherwise eval | |
preprocessing is done. | |
Raises: | |
ValueError: if dataset_name is invalid. | |
Returns: | |
dataset: instance of tf.data.Dataset with the dataset. | |
num_examples: number of examples in given split of the dataset. | |
num_classes: number of classes in the dataset. | |
bounds: tuple with bounds of image values. All returned image pixels | |
are between bounds[0] and bounds[1]. | |
""" | |
if dataset_name == 'tiny_imagenet': | |
dataset = tiny_imagenet_input.tiny_imagenet_input( | |
split, batch_size, image_size, is_training) | |
num_examples = tiny_imagenet_input.num_examples_per_epoch(split) | |
num_classes = 200 | |
bounds = (-1, 1) | |
elif dataset_name == 'imagenet': | |
dataset = imagenet_input.imagenet_input( | |
split, batch_size, image_size, is_training) | |
num_examples = imagenet_input.num_examples_per_epoch(split) | |
num_classes = 1001 | |
bounds = (-1, 1) | |
else: | |
raise ValueError('Invalid dataset %s' % dataset_name) | |
return dataset, num_examples, num_classes, bounds | |