NCTCMumbai's picture
Upload 2571 files
0b8359d
# Copyright 2018 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Library which creates datasets."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from datasets import imagenet_input
from datasets import tiny_imagenet_input
def get_dataset(dataset_name, split, batch_size, image_size, is_training):
"""Returns dataset.
Args:
dataset_name: name of the dataset, "imagenet" or "tiny_imagenet".
split: name of the split, "train" or "validation".
batch_size: size of the minibatch.
image_size: size of the one side of the image. Output images will be
resized to square shape image_size*image_size.
is_training: if True then training preprocessing is done, otherwise eval
preprocessing is done.
Raises:
ValueError: if dataset_name is invalid.
Returns:
dataset: instance of tf.data.Dataset with the dataset.
num_examples: number of examples in given split of the dataset.
num_classes: number of classes in the dataset.
bounds: tuple with bounds of image values. All returned image pixels
are between bounds[0] and bounds[1].
"""
if dataset_name == 'tiny_imagenet':
dataset = tiny_imagenet_input.tiny_imagenet_input(
split, batch_size, image_size, is_training)
num_examples = tiny_imagenet_input.num_examples_per_epoch(split)
num_classes = 200
bounds = (-1, 1)
elif dataset_name == 'imagenet':
dataset = imagenet_input.imagenet_input(
split, batch_size, image_size, is_training)
num_examples = imagenet_input.num_examples_per_epoch(split)
num_classes = 1001
bounds = (-1, 1)
else:
raise ValueError('Invalid dataset %s' % dataset_name)
return dataset, num_examples, num_classes, bounds