Spaces:
Running
Running
# Running DeepLab on PASCAL VOC 2012 Semantic Segmentation Dataset | |
This page walks through the steps required to run DeepLab on PASCAL VOC 2012 on | |
a local machine. | |
## Download dataset and convert to TFRecord | |
We have prepared the script (under the folder `datasets`) to download and | |
convert PASCAL VOC 2012 semantic segmentation dataset to TFRecord. | |
```bash | |
# From the tensorflow/models/research/deeplab/datasets directory. | |
sh download_and_convert_voc2012.sh | |
``` | |
The converted dataset will be saved at | |
./deeplab/datasets/pascal_voc_seg/tfrecord | |
## Recommended Directory Structure for Training and Evaluation | |
``` | |
+ datasets | |
+ pascal_voc_seg | |
+ VOCdevkit | |
+ VOC2012 | |
+ JPEGImages | |
+ SegmentationClass | |
+ tfrecord | |
+ exp | |
+ train_on_train_set | |
+ train | |
+ eval | |
+ vis | |
``` | |
where the folder `train_on_train_set` stores the train/eval/vis events and | |
results (when training DeepLab on the PASCAL VOC 2012 train set). | |
## Running the train/eval/vis jobs | |
A local training job using `xception_65` can be run with the following command: | |
```bash | |
# From tensorflow/models/research/ | |
python deeplab/train.py \ | |
--logtostderr \ | |
--training_number_of_steps=30000 \ | |
--train_split="train" \ | |
--model_variant="xception_65" \ | |
--atrous_rates=6 \ | |
--atrous_rates=12 \ | |
--atrous_rates=18 \ | |
--output_stride=16 \ | |
--decoder_output_stride=4 \ | |
--train_crop_size="513,513" \ | |
--train_batch_size=1 \ | |
--dataset="pascal_voc_seg" \ | |
--tf_initial_checkpoint=${PATH_TO_INITIAL_CHECKPOINT} \ | |
--train_logdir=${PATH_TO_TRAIN_DIR} \ | |
--dataset_dir=${PATH_TO_DATASET} | |
``` | |
where ${PATH_TO_INITIAL_CHECKPOINT} is the path to the initial checkpoint | |
(usually an ImageNet pretrained checkpoint), ${PATH_TO_TRAIN_DIR} is the | |
directory in which training checkpoints and events will be written to, and | |
${PATH_TO_DATASET} is the directory in which the PASCAL VOC 2012 dataset | |
resides. | |
**Note that for {train,eval,vis}.py:** | |
1. In order to reproduce our results, one needs to use large batch size (> 12), | |
and set fine_tune_batch_norm = True. Here, we simply use small batch size | |
during training for the purpose of demonstration. If the users have limited | |
GPU memory at hand, please fine-tune from our provided checkpoints whose | |
batch norm parameters have been trained, and use smaller learning rate with | |
fine_tune_batch_norm = False. | |
2. The users should change atrous_rates from [6, 12, 18] to [12, 24, 36] if | |
setting output_stride=8. | |
3. The users could skip the flag, `decoder_output_stride`, if you do not want | |
to use the decoder structure. | |
A local evaluation job using `xception_65` can be run with the following | |
command: | |
```bash | |
# From tensorflow/models/research/ | |
python deeplab/eval.py \ | |
--logtostderr \ | |
--eval_split="val" \ | |
--model_variant="xception_65" \ | |
--atrous_rates=6 \ | |
--atrous_rates=12 \ | |
--atrous_rates=18 \ | |
--output_stride=16 \ | |
--decoder_output_stride=4 \ | |
--eval_crop_size="513,513" \ | |
--dataset="pascal_voc_seg" \ | |
--checkpoint_dir=${PATH_TO_CHECKPOINT} \ | |
--eval_logdir=${PATH_TO_EVAL_DIR} \ | |
--dataset_dir=${PATH_TO_DATASET} | |
``` | |
where ${PATH_TO_CHECKPOINT} is the path to the trained checkpoint (i.e., the | |
path to train_logdir), ${PATH_TO_EVAL_DIR} is the directory in which evaluation | |
events will be written to, and ${PATH_TO_DATASET} is the directory in which the | |
PASCAL VOC 2012 dataset resides. | |
A local visualization job using `xception_65` can be run with the following | |
command: | |
```bash | |
# From tensorflow/models/research/ | |
python deeplab/vis.py \ | |
--logtostderr \ | |
--vis_split="val" \ | |
--model_variant="xception_65" \ | |
--atrous_rates=6 \ | |
--atrous_rates=12 \ | |
--atrous_rates=18 \ | |
--output_stride=16 \ | |
--decoder_output_stride=4 \ | |
--vis_crop_size="513,513" \ | |
--dataset="pascal_voc_seg" \ | |
--checkpoint_dir=${PATH_TO_CHECKPOINT} \ | |
--vis_logdir=${PATH_TO_VIS_DIR} \ | |
--dataset_dir=${PATH_TO_DATASET} | |
``` | |
where ${PATH_TO_CHECKPOINT} is the path to the trained checkpoint (i.e., the | |
path to train_logdir), ${PATH_TO_VIS_DIR} is the directory in which evaluation | |
events will be written to, and ${PATH_TO_DATASET} is the directory in which the | |
PASCAL VOC 2012 dataset resides. Note that if the users would like to save the | |
segmentation results for evaluation server, set also_save_raw_predictions = | |
True. | |
## Running Tensorboard | |
Progress for training and evaluation jobs can be inspected using Tensorboard. If | |
using the recommended directory structure, Tensorboard can be run using the | |
following command: | |
```bash | |
tensorboard --logdir=${PATH_TO_LOG_DIRECTORY} | |
``` | |
where `${PATH_TO_LOG_DIRECTORY}` points to the directory that contains the | |
train, eval, and vis directories (e.g., the folder `train_on_train_set` in the | |
above example). Please note it may take Tensorboard a couple minutes to populate | |
with data. | |
## Example | |
We provide a script to run the {train,eval,vis,export_model}.py on the PASCAL VOC | |
2012 dataset as an example. See the code in local_test.sh for details. | |
```bash | |
# From tensorflow/models/research/deeplab | |
sh local_test.sh | |
``` | |