Spaces:
Running
Running
# Tensorflow Mobile Video Object Detection | |
Tensorflow mobile video object detection implementation proposed in the | |
following papers: | |
<p align="center"> | |
<img src="g3doc/lstm_ssd_intro.png" width=640 height=360> | |
</p> | |
``` | |
"Mobile Video Object Detection with Temporally-Aware Feature Maps", | |
Liu, Mason and Zhu, Menglong, CVPR 2018. | |
``` | |
\[[link](http://openaccess.thecvf.com/content_cvpr_2018/papers/Liu_Mobile_Video_Object_CVPR_2018_paper.pdf)\]\[[bibtex]( | |
https://scholar.googleusercontent.com/scholar.bib?q=info:hq5rcMUUXysJ:scholar.google.com/&output=citation&scisig=AAGBfm0AAAAAXLdwXcU5g_wiMQ40EvbHQ9kTyvfUxffh&scisf=4&ct=citation&cd=-1&hl=en)\] | |
<p align="center"> | |
<img src="g3doc/Interleaved_Intro.png" width=480 height=360> | |
</p> | |
``` | |
"Looking Fast and Slow: Memory-Guided Mobile Video Object Detection", | |
Liu, Mason and Zhu, Menglong and White, Marie and Li, Yinxiao and Kalenichenko, Dmitry | |
``` | |
\[[link](https://arxiv.org/abs/1903.10172)\]\[[bibtex]( | |
https://scholar.googleusercontent.com/scholar.bib?q=info:rLqvkztmWYgJ:scholar.google.com/&output=citation&scisig=AAGBfm0AAAAAXLdwNf-LJlm2M1ymQHbq2wYA995MHpJu&scisf=4&ct=citation&cd=-1&hl=en)\] | |
## Maintainers | |
* masonliuw@gmail.com | |
* yinxiao@google.com | |
* menglong@google.com | |
* yongzhe@google.com | |
* lzyuan@google.com | |
## Table of Contents | |
* <a href='g3doc/exporting_models.md'>Exporting a trained model</a> | |