smart-quiz-ui / quiz_logic /generator.py
NZLouislu's picture
Fix issues to add question numbers.
8d44ca7
import os
import random
import json
import re
import traceback
import time
import torch
import gradio as gr
from transformers import AutoTokenizer, T5ForConditionalGeneration
from quiz_logic.wikipedia_utils import fetch_context, extract_keywords
from quiz_logic.state import (
quiz_data,
current_question_index,
score,
user_answer,
set_user_answer,
reset_user_answer,
increment_score,
increment_index,
)
os.environ["TOKENIZERS_PARALLELISM"] = "false"
cache_dir = "/tmp/hf_cache"
os.makedirs(cache_dir, exist_ok=True)
T5_MODEL_ID = os.environ.get("T5_MODEL_ID", "google/flan-t5-small")
_device = None
_t5_tokenizer = None
_t5_model = None
QUESTION_TEMPLATES = {
"definition": "What is {concept}?",
"function": "What is the primary purpose of {concept}?",
"example": "Which of the following is an example of {concept}?",
"comparison": "How does {concept1} differ from {concept2}?",
"application": "When would you use {concept}?",
"characteristic": "Which characteristic best describes {concept}?",
"process": "What happens when {concept} is applied?",
"category": "Which category does {concept} belong to?"
}
IMPROVED_PROMPT_TEMPLATES = {
"python": """Create a multiple choice question about Python programming.
Topic: {focus}
Context: {context}
Difficulty: {level}
Generate a clear, specific question with 4 distinct options where only one is correct.
Focus on practical knowledge, syntax, or concepts.
Format:
Question: [specific question about {focus}]
A) [correct answer]
B) [plausible wrong answer]
C) [plausible wrong answer]
D) [plausible wrong answer]
Answer: A""",
"general": """Create a multiple choice question about {topic}.
Focus area: {focus}
Context: {context}
Difficulty: {level}
Generate a clear, educational question with 4 distinct options where only one is correct.
Make the question specific and the wrong answers plausible but clearly incorrect.
Format:
Question: [specific question about {focus}]
A) [correct answer]
B) [realistic wrong answer]
C) [realistic wrong answer]
D) [realistic wrong answer]
Answer: A"""
}
FALLBACK_QUESTIONS = {
"python": [
{
"question": "Which keyword is used to define a function in Python?",
"options": ["def", "function", "define", "func"],
"answer": "def",
"explanation": "The 'def' keyword is used to define functions in Python."
},
{
"question": "What data type is used to store a sequence of characters in Python?",
"options": ["str", "string", "text", "char"],
"answer": "str",
"explanation": "In Python, strings are represented by the 'str' data type."
},
{
"question": "Which operator is used for integer division in Python?",
"options": ["//", "/", "%", "**"],
"answer": "//",
"explanation": "The '//' operator performs floor division (integer division) in Python."
}
],
"general": [
{
"question": "What is the capital of France?",
"options": ["Paris", "London", "Berlin", "Rome"],
"answer": "Paris",
"explanation": "Paris is the capital and largest city of France."
}
]
}
def get_device():
global _device
if _device is None:
_device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
return _device
def get_t5_tokenizer_and_model():
global _t5_tokenizer, _t5_model
device = get_device()
if _t5_tokenizer is None or _t5_model is None:
try:
_t5_tokenizer = AutoTokenizer.from_pretrained(T5_MODEL_ID, cache_dir=cache_dir, use_fast=True)
_t5_model = T5ForConditionalGeneration.from_pretrained(T5_MODEL_ID, cache_dir=cache_dir)
_t5_model.to(device)
_t5_model.eval()
except Exception:
_t5_tokenizer = AutoTokenizer.from_pretrained(T5_MODEL_ID, use_fast=True)
_t5_model = T5ForConditionalGeneration.from_pretrained(T5_MODEL_ID)
_t5_model.to(device)
_t5_model.eval()
return _t5_tokenizer, _t5_model
def _parse_raw_question(text):
text = text.replace("\r", "\n").strip()
question_match = re.search(r'Question:\s*(.+?)(?=\n[A-D]\)|$)', text, re.S)
if question_match:
question = question_match.group(1).strip()
else:
lines = [line.strip() for line in text.split('\n') if line.strip()]
if lines:
question = lines[0]
else:
return None
options = []
option_pattern = r'^([A-D])\)\s*(.+)$'
for line in text.split('\n'):
match = re.match(option_pattern, line.strip())
if match:
options.append(match.group(2).strip())
if len(options) < 4:
return None
answer_match = re.search(r'Answer:\s*([A-D])', text)
if answer_match:
answer_index = ord(answer_match.group(1)) - ord('A')
if 0 <= answer_index < len(options):
answer = options[answer_index]
else:
answer = options[0]
else:
answer = options[0]
return {
"question": question,
"options": options[:4],
"answer": answer,
"explanation": f"The correct answer is {answer}."
}
def _validate_question_quality(qobj):
if not qobj or not isinstance(qobj, dict):
return False
question = qobj.get("question", "")
options = qobj.get("options", [])
answer = qobj.get("answer", "")
if len(question.split()) < 5:
return False
if len(options) != 4:
return False
if answer not in options:
return False
unique_options = set(opt.lower().strip() for opt in options)
if len(unique_options) != 4:
return False
for opt in options:
if len(opt.strip()) < 2:
return False
return True
def _create_smart_distractors(correct_answer, topic, context):
distractors = []
if "python" in topic.lower():
python_distractors = {
"def": ["function", "define", "method"],
"str": ["string", "text", "varchar"],
"int": ["integer", "number", "num"],
"list": ["array", "vector", "sequence"],
"dict": ["map", "hash", "object"],
"True": ["true", "TRUE", "1"],
"False": ["false", "FALSE", "0"],
"None": ["null", "NULL", "nil"],
"print": ["console.log", "echo", "write"],
"len": ["length", "size", "count"]
}
if correct_answer in python_distractors:
distractors.extend(python_distractors[correct_answer])
words = context.lower().split()
for word in words:
if (word != correct_answer.lower() and
len(word) > 2 and
word.isalpha() and
len(distractors) < 6):
distractors.append(word.capitalize())
generic_distractors = ["Option A", "Option B", "Option C", "Not applicable", "All of the above", "None of the above"]
distractors.extend(generic_distractors)
final_distractors = []
for d in distractors:
if d.lower() != correct_answer.lower() and d not in final_distractors:
final_distractors.append(d)
if len(final_distractors) >= 3:
break
return final_distractors[:3]
def _generate_structured_question(topic, focus, context, difficulty):
topic_lower = topic.lower()
if "python" in topic_lower:
if "function" in focus.lower():
return {
"question": "Which keyword is used to define a function in Python?",
"options": ["def", "function", "define", "func"],
"answer": "def",
"explanation": "The 'def' keyword is the standard way to define functions in Python."
}
elif "string" in focus.lower() or "str" in focus.lower():
return {
"question": "What method would you use to convert a string to uppercase in Python?",
"options": ["upper()", "toUpperCase()", "uppercase()", "UPPER()"],
"answer": "upper()",
"explanation": "The upper() method returns a string with all characters converted to uppercase."
}
elif "list" in focus.lower():
return {
"question": "Which method adds an element to the end of a Python list?",
"options": ["append()", "add()", "insert()", "push()"],
"answer": "append()",
"explanation": "The append() method adds a single element to the end of a list."
}
template_type = random.choice(list(QUESTION_TEMPLATES.keys()))
question_template = QUESTION_TEMPLATES[template_type]
if "{concept}" in question_template:
question = question_template.format(concept=focus)
elif "{concept1}" in question_template:
concepts = focus.split()
if len(concepts) >= 2:
question = question_template.format(concept1=concepts[0], concept2=concepts[1])
else:
question = f"What is {focus}?"
else:
question = f"What is {focus}?"
correct_answer = focus.capitalize()
distractors = _create_smart_distractors(correct_answer, topic, context)
while len(distractors) < 3:
distractors.append(f"Not {correct_answer}")
options = [correct_answer] + distractors[:3]
random.shuffle(options)
return {
"question": question,
"options": options,
"answer": correct_answer,
"explanation": f"{correct_answer} is the correct answer based on the given context."
}
def generate_questions(topic, n_questions=3, difficulty="medium"):
try:
quiz_data.clear()
context = fetch_context(topic) or f"This is about {topic}"
keywords = extract_keywords(context, top_k=max(n_questions * 2, 8)) or [topic]
tokenizer, model = get_t5_tokenizer_and_model()
successful_questions = 0
attempts = 0
max_attempts = n_questions * 3
topic_lower = topic.lower()
prompt_template = IMPROVED_PROMPT_TEMPLATES.get("python" if "python" in topic_lower else "general")
while successful_questions < n_questions and attempts < max_attempts:
focus = random.choice(keywords) if keywords else topic
if attempts < n_questions:
prompt = prompt_template.format(
topic=topic,
focus=focus,
context=context[:600],
level=difficulty
)
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512)
inputs = {k: v.to(get_device()) for k, v in inputs.items()}
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=200,
num_beams=5,
do_sample=True,
temperature=0.8,
top_p=0.9,
no_repeat_ngram_size=3,
early_stopping=True
)
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
parsed_question = _parse_raw_question(generated_text)
if parsed_question and _validate_question_quality(parsed_question):
quiz_data.append(parsed_question)
successful_questions += 1
attempts += 1
continue
structured_question = _generate_structured_question(topic, focus, context, difficulty)
if _validate_question_quality(structured_question):
quiz_data.append(structured_question)
successful_questions += 1
attempts += 1
while successful_questions < n_questions:
fallback_pool = FALLBACK_QUESTIONS.get("python" if "python" in topic_lower else "general", FALLBACK_QUESTIONS["general"])
fallback_q = random.choice(fallback_pool)
quiz_data.append(fallback_q.copy())
successful_questions += 1
return len(quiz_data) > 0
except Exception as e:
print(f"Error generating questions: {e}")
traceback.print_exc()
fallback_pool = FALLBACK_QUESTIONS.get("python" if "python" in topic.lower() else "general", FALLBACK_QUESTIONS["general"])
for i in range(min(n_questions, len(fallback_pool))):
quiz_data.append(fallback_pool[i].copy())
return len(quiz_data) > 0
def get_question_ui():
reset_user_answer()
if not quiz_data or current_question_index[0] >= len(quiz_data):
return (
gr.update(value="Quiz finished!"),
gr.update(choices=[], value=None, interactive=False, visible=False),
gr.update(value="", visible=False),
gr.update(visible=False),
gr.update(value=f"🎉 Quiz finished! Your score: {score[0]}/{len(quiz_data)}", visible=True)
)
q = quiz_data[current_question_index[0]]
question_display = f"### Question {current_question_index[0] + 1}\n{q['question']}"
return (
gr.update(value=question_display, visible=True),
gr.update(choices=q["options"], value=None, interactive=True, visible=True),
gr.update(value="", visible=False),
gr.update(visible=False),
gr.update(value="", visible=False)
)
def next_question():
increment_index()
if current_question_index[0] >= len(quiz_data):
return f"🎉 Quiz finished! Your score: {score[0]}/{len(quiz_data)}"
q = quiz_data[current_question_index[0]]
return q["question"], q["options"]
def on_select(selected_option):
set_user_answer(selected_option)
q = quiz_data[current_question_index[0]]
correct = q.get("answer")
if isinstance(correct, int):
correct = q["options"][correct]
is_correct = str(selected_option).strip().lower() == str(correct).strip().lower()
if is_correct:
increment_score()
feedback = "Correct! Well done!"
else:
feedback = f"The correct answer is: {correct}"
last = (current_question_index[0] == len(quiz_data) - 1)
next_label = "View scores" if last else "Next question"
return feedback, True, next_label