NightRaven109's picture
Upload 38 files
f69d33f verified
# Copyright 2022 Google LLC.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Main file for the MAXIM model."""
import functools
from typing import Any, Sequence, Tuple
import einops
import flax.linen as nn
import jax
import jax.numpy as jnp
Conv3x3 = functools.partial(nn.Conv, kernel_size=(3, 3))
Conv1x1 = functools.partial(nn.Conv, kernel_size=(1, 1))
ConvT_up = functools.partial(nn.ConvTranspose,
kernel_size=(2, 2),
strides=(2, 2))
Conv_down = functools.partial(nn.Conv,
kernel_size=(4, 4),
strides=(2, 2))
weight_initializer = nn.initializers.normal(stddev=2e-2)
class MlpBlock(nn.Module):
"""A 1-hidden-layer MLP block, applied over the last dimension."""
mlp_dim: int
dropout_rate: float = 0.0
use_bias: bool = True
@nn.compact
def __call__(self, x, deterministic=True):
n, h, w, d = x.shape
x = nn.Dense(self.mlp_dim, use_bias=self.use_bias,
kernel_init=weight_initializer)(x)
x = nn.gelu(x)
x = nn.Dropout(rate=self.dropout_rate)(x, deterministic)
x = nn.Dense(d, use_bias=self.use_bias,
kernel_init=weight_initializer)(x)
return x
def block_images_einops(x, patch_size):
"""Image to patches."""
batch, height, width, channels = x.shape
grid_height = height // patch_size[0]
grid_width = width // patch_size[1]
x = einops.rearrange(
x, "n (gh fh) (gw fw) c -> n (gh gw) (fh fw) c",
gh=grid_height, gw=grid_width, fh=patch_size[0], fw=patch_size[1])
return x
def unblock_images_einops(x, grid_size, patch_size):
"""patches to images."""
x = einops.rearrange(
x, "n (gh gw) (fh fw) c -> n (gh fh) (gw fw) c",
gh=grid_size[0], gw=grid_size[1], fh=patch_size[0], fw=patch_size[1])
return x
class UpSampleRatio(nn.Module):
"""Upsample features given a ratio > 0."""
features: int
ratio: float
use_bias: bool = True
@nn.compact
def __call__(self, x):
n, h, w, c = x.shape
x = jax.image.resize(
x,
shape=(n, int(h * self.ratio), int(w * self.ratio), c),
method="bilinear")
x = Conv1x1(features=self.features, use_bias=self.use_bias)(x)
return x
class CALayer(nn.Module):
"""Squeeze-and-excitation block for channel attention.
ref: https://arxiv.org/abs/1709.01507
"""
features: int
reduction: int = 4
use_bias: bool = True
@nn.compact
def __call__(self, x):
# 2D global average pooling
y = jnp.mean(x, axis=[1, 2], keepdims=True)
# Squeeze (in Squeeze-Excitation)
y = Conv1x1(self.features // self.reduction, use_bias=self.use_bias)(y)
y = nn.relu(y)
# Excitation (in Squeeze-Excitation)
y = Conv1x1(self.features, use_bias=self.use_bias)(y)
y = nn.sigmoid(y)
return x * y
class RCAB(nn.Module):
"""Residual channel attention block. Contains LN,Conv,lRelu,Conv,SELayer."""
features: int
reduction: int = 4
lrelu_slope: float = 0.2
use_bias: bool = True
@nn.compact
def __call__(self, x):
shortcut = x
x = nn.LayerNorm(name="LayerNorm")(x)
x = Conv3x3(features=self.features, use_bias=self.use_bias, name="conv1")(x)
x = nn.leaky_relu(x, negative_slope=self.lrelu_slope)
x = Conv3x3(features=self.features, use_bias=self.use_bias, name="conv2")(x)
x = CALayer(features=self.features, reduction=self.reduction,
use_bias=self.use_bias, name="channel_attention")(x)
return x + shortcut
class GridGatingUnit(nn.Module):
"""A SpatialGatingUnit as defined in the gMLP paper.
The 'spatial' dim is defined as the second last.
If applied on other dims, you should swapaxes first.
"""
use_bias: bool = True
@nn.compact
def __call__(self, x):
u, v = jnp.split(x, 2, axis=-1)
v = nn.LayerNorm(name="intermediate_layernorm")(v)
n = x.shape[-3] # get spatial dim
v = jnp.swapaxes(v, -1, -3)
v = nn.Dense(n, use_bias=self.use_bias, kernel_init=weight_initializer)(v)
v = jnp.swapaxes(v, -1, -3)
return u * (v + 1.)
class GridGmlpLayer(nn.Module):
"""Grid gMLP layer that performs global mixing of tokens."""
grid_size: Sequence[int]
use_bias: bool = True
factor: int = 2
dropout_rate: float = 0.0
@nn.compact
def __call__(self, x, deterministic=True):
n, h, w, num_channels = x.shape
gh, gw = self.grid_size
fh, fw = h // gh, w // gw
x = block_images_einops(x, patch_size=(fh, fw))
# gMLP1: Global (grid) mixing part, provides global grid communication.
y = nn.LayerNorm(name="LayerNorm")(x)
y = nn.Dense(num_channels * self.factor, use_bias=self.use_bias,
kernel_init=weight_initializer, name="in_project")(y)
y = nn.gelu(y)
y = GridGatingUnit(use_bias=self.use_bias, name="GridGatingUnit")(y)
y = nn.Dense(num_channels, use_bias=self.use_bias,
kernel_init=weight_initializer, name="out_project")(y)
y = nn.Dropout(self.dropout_rate)(y, deterministic)
x = x + y
x = unblock_images_einops(x, grid_size=(gh, gw), patch_size=(fh, fw))
return x
class BlockGatingUnit(nn.Module):
"""A SpatialGatingUnit as defined in the gMLP paper.
The 'spatial' dim is defined as the **second last**.
If applied on other dims, you should swapaxes first.
"""
use_bias: bool = True
@nn.compact
def __call__(self, x):
u, v = jnp.split(x, 2, axis=-1)
v = nn.LayerNorm(name="intermediate_layernorm")(v)
n = x.shape[-2] # get spatial dim
v = jnp.swapaxes(v, -1, -2)
v = nn.Dense(n, use_bias=self.use_bias, kernel_init=weight_initializer)(v)
v = jnp.swapaxes(v, -1, -2)
return u * (v + 1.)
class BlockGmlpLayer(nn.Module):
"""Block gMLP layer that performs local mixing of tokens."""
block_size: Sequence[int]
use_bias: bool = True
factor: int = 2
dropout_rate: float = 0.0
@nn.compact
def __call__(self, x, deterministic=True):
n, h, w, num_channels = x.shape
fh, fw = self.block_size
gh, gw = h // fh, w // fw
x = block_images_einops(x, patch_size=(fh, fw))
# MLP2: Local (block) mixing part, provides within-block communication.
y = nn.LayerNorm(name="LayerNorm")(x)
y = nn.Dense(num_channels * self.factor, use_bias=self.use_bias,
kernel_init=weight_initializer, name="in_project")(y)
y = nn.gelu(y)
y = BlockGatingUnit(use_bias=self.use_bias, name="BlockGatingUnit")(y)
y = nn.Dense(num_channels, use_bias=self.use_bias,
kernel_init=weight_initializer, name="out_project")(y)
y = nn.Dropout(self.dropout_rate)(y, deterministic)
x = x + y
x = unblock_images_einops(x, grid_size=(gh, gw), patch_size=(fh, fw))
return x
class ResidualSplitHeadMultiAxisGmlpLayer(nn.Module):
"""The multi-axis gated MLP block."""
block_size: Sequence[int]
grid_size: Sequence[int]
block_gmlp_factor: int = 2
grid_gmlp_factor: int = 2
input_proj_factor: int = 2
use_bias: bool = True
dropout_rate: float = 0.0
@nn.compact
def __call__(self, x, deterministic=True):
shortcut = x
n, h, w, num_channels = x.shape
x = nn.LayerNorm(name="LayerNorm_in")(x)
x = nn.Dense(num_channels * self.input_proj_factor, use_bias=self.use_bias,
kernel_init=weight_initializer, name="in_project")(x)
x = nn.gelu(x)
u, v = jnp.split(x, 2, axis=-1)
# GridGMLPLayer
u = GridGmlpLayer(
grid_size=self.grid_size,
factor=self.grid_gmlp_factor,
use_bias=self.use_bias,
dropout_rate=self.dropout_rate,
name="GridGmlpLayer")(u, deterministic)
# BlockGMLPLayer
v = BlockGmlpLayer(
block_size=self.block_size,
factor=self.block_gmlp_factor,
use_bias=self.use_bias,
dropout_rate=self.dropout_rate,
name="BlockGmlpLayer")(v, deterministic)
x = jnp.concatenate([u, v], axis=-1)
x = nn.Dense(num_channels, use_bias=self.use_bias,
kernel_init=weight_initializer, name="out_project")(x)
x = nn.Dropout(self.dropout_rate)(x, deterministic)
x = x + shortcut
return x
class RDCAB(nn.Module):
"""Residual dense channel attention block. Used in Bottlenecks."""
features: int
reduction: int = 16
use_bias: bool = True
dropout_rate: float = 0.0
@nn.compact
def __call__(self, x, deterministic=True):
y = nn.LayerNorm(name="LayerNorm")(x)
y = MlpBlock(
mlp_dim=self.features,
dropout_rate=self.dropout_rate,
use_bias=self.use_bias,
name="channel_mixing")(
y, deterministic=deterministic)
y = CALayer(
features=self.features,
reduction=self.reduction,
use_bias=self.use_bias,
name="channel_attention")(
y)
x = x + y
return x
class BottleneckBlock(nn.Module):
"""The bottleneck block consisting of multi-axis gMLP block and RDCAB."""
features: int
block_size: Sequence[int]
grid_size: Sequence[int]
num_groups: int = 1
block_gmlp_factor: int = 2
grid_gmlp_factor: int = 2
input_proj_factor: int = 2
channels_reduction: int = 4
dropout_rate: float = 0.0
use_bias: bool = True
@nn.compact
def __call__(self, x, deterministic):
"""Applies the Mixer block to inputs."""
assert x.ndim == 4 # Input has shape [batch, h, w, c]
n, h, w, num_channels = x.shape
# input projection
x = Conv1x1(self.features, use_bias=self.use_bias, name="input_proj")(x)
shortcut_long = x
for i in range(self.num_groups):
x = ResidualSplitHeadMultiAxisGmlpLayer(
grid_size=self.grid_size,
block_size=self.block_size,
grid_gmlp_factor=self.grid_gmlp_factor,
block_gmlp_factor=self.block_gmlp_factor,
input_proj_factor=self.input_proj_factor,
use_bias=self.use_bias,
dropout_rate=self.dropout_rate,
name=f"SplitHeadMultiAxisGmlpLayer_{i}")(x, deterministic)
# Channel-mixing part, which provides within-patch communication.
x = RDCAB(
features=self.features,
reduction=self.channels_reduction,
use_bias=self.use_bias,
name=f"channel_attention_block_1_{i}")(
x)
# long skip-connect
x = x + shortcut_long
return x
class UNetEncoderBlock(nn.Module):
"""Encoder block in MAXIM."""
features: int
block_size: Sequence[int]
grid_size: Sequence[int]
num_groups: int = 1
lrelu_slope: float = 0.2
block_gmlp_factor: int = 2
grid_gmlp_factor: int = 2
input_proj_factor: int = 2
channels_reduction: int = 4
dropout_rate: float = 0.0
downsample: bool = True
use_global_mlp: bool = True
use_bias: bool = True
use_cross_gating: bool = False
@nn.compact
def __call__(self, x: jnp.ndarray, skip: jnp.ndarray = None,
enc: jnp.ndarray = None, dec: jnp.ndarray = None, *,
deterministic: bool = True) -> jnp.ndarray:
if skip is not None:
x = jnp.concatenate([x, skip], axis=-1)
# convolution-in
x = Conv1x1(self.features, use_bias=self.use_bias)(x)
shortcut_long = x
for i in range(self.num_groups):
if self.use_global_mlp:
x = ResidualSplitHeadMultiAxisGmlpLayer(
grid_size=self.grid_size,
block_size=self.block_size,
grid_gmlp_factor=self.grid_gmlp_factor,
block_gmlp_factor=self.block_gmlp_factor,
input_proj_factor=self.input_proj_factor,
use_bias=self.use_bias,
dropout_rate=self.dropout_rate,
name=f"SplitHeadMultiAxisGmlpLayer_{i}")(x, deterministic)
x = RCAB(
features=self.features,
reduction=self.channels_reduction,
use_bias=self.use_bias,
name=f"channel_attention_block_1{i}")(x)
x = x + shortcut_long
if enc is not None and dec is not None:
assert self.use_cross_gating
x, _ = CrossGatingBlock(
features=self.features,
block_size=self.block_size,
grid_size=self.grid_size,
dropout_rate=self.dropout_rate,
input_proj_factor=self.input_proj_factor,
upsample_y=False,
use_bias=self.use_bias,
name="cross_gating_block")(
x, enc + dec, deterministic=deterministic)
if self.downsample:
x_down = Conv_down(self.features, use_bias=self.use_bias)(x)
return x_down, x
else:
return x
class UNetDecoderBlock(nn.Module):
"""Decoder block in MAXIM."""
features: int
block_size: Sequence[int]
grid_size: Sequence[int]
num_groups: int = 1
lrelu_slope: float = 0.2
block_gmlp_factor: int = 2
grid_gmlp_factor: int = 2
input_proj_factor: int = 2
channels_reduction: int = 4
dropout_rate: float = 0.0
downsample: bool = True
use_global_mlp: bool = True
use_bias: bool = True
@nn.compact
def __call__(self, x: jnp.ndarray, bridge: jnp.ndarray = None,
deterministic: bool = True) -> jnp.ndarray:
x = ConvT_up(self.features, use_bias=self.use_bias)(x)
x = UNetEncoderBlock(
self.features,
num_groups=self.num_groups,
lrelu_slope=self.lrelu_slope,
block_size=self.block_size,
grid_size=self.grid_size,
block_gmlp_factor=self.block_gmlp_factor,
grid_gmlp_factor=self.grid_gmlp_factor,
channels_reduction=self.channels_reduction,
use_global_mlp=self.use_global_mlp,
dropout_rate=self.dropout_rate,
downsample=False,
use_bias=self.use_bias)(x, skip=bridge, deterministic=deterministic)
return x
class GetSpatialGatingWeights(nn.Module):
"""Get gating weights for cross-gating MLP block."""
features: int
block_size: Sequence[int]
grid_size: Sequence[int]
input_proj_factor: int = 2
dropout_rate: float = 0.0
use_bias: bool = True
@nn.compact
def __call__(self, x, deterministic):
n, h, w, num_channels = x.shape
# input projection
x = nn.LayerNorm(name="LayerNorm_in")(x)
x = nn.Dense(
num_channels * self.input_proj_factor,
use_bias=self.use_bias,
name="in_project")(
x)
x = nn.gelu(x)
u, v = jnp.split(x, 2, axis=-1)
# Get grid MLP weights
gh, gw = self.grid_size
fh, fw = h // gh, w // gw
u = block_images_einops(u, patch_size=(fh, fw))
dim_u = u.shape[-3]
u = jnp.swapaxes(u, -1, -3)
u = nn.Dense(
dim_u, use_bias=self.use_bias, kernel_init=nn.initializers.normal(2e-2),
bias_init=nn.initializers.ones)(u)
u = jnp.swapaxes(u, -1, -3)
u = unblock_images_einops(u, grid_size=(gh, gw), patch_size=(fh, fw))
# Get Block MLP weights
fh, fw = self.block_size
gh, gw = h // fh, w // fw
v = block_images_einops(v, patch_size=(fh, fw))
dim_v = v.shape[-2]
v = jnp.swapaxes(v, -1, -2)
v = nn.Dense(
dim_v, use_bias=self.use_bias, kernel_init=nn.initializers.normal(2e-2),
bias_init=nn.initializers.ones)(v)
v = jnp.swapaxes(v, -1, -2)
v = unblock_images_einops(v, grid_size=(gh, gw), patch_size=(fh, fw))
x = jnp.concatenate([u, v], axis=-1)
x = nn.Dense(num_channels, use_bias=self.use_bias, name="out_project")(x)
x = nn.Dropout(self.dropout_rate)(x, deterministic)
return x
class CrossGatingBlock(nn.Module):
"""Cross-gating MLP block."""
features: int
block_size: Sequence[int]
grid_size: Sequence[int]
dropout_rate: float = 0.0
input_proj_factor: int = 2
upsample_y: bool = True
use_bias: bool = True
@nn.compact
def __call__(self, x, y, deterministic=True):
# Upscale Y signal, y is the gating signal.
if self.upsample_y:
y = ConvT_up(self.features, use_bias=self.use_bias)(y)
x = Conv1x1(self.features, use_bias=self.use_bias)(x)
n, h, w, num_channels = x.shape
y = Conv1x1(num_channels, use_bias=self.use_bias)(y)
assert y.shape == x.shape
shortcut_x = x
shortcut_y = y
# Get gating weights from X
x = nn.LayerNorm(name="LayerNorm_x")(x)
x = nn.Dense(num_channels, use_bias=self.use_bias, name="in_project_x")(x)
x = nn.gelu(x)
gx = GetSpatialGatingWeights(
features=num_channels,
block_size=self.block_size,
grid_size=self.grid_size,
dropout_rate=self.dropout_rate,
use_bias=self.use_bias,
name="SplitHeadMultiAxisGating_x")(
x, deterministic=deterministic)
# Get gating weights from Y
y = nn.LayerNorm(name="LayerNorm_y")(y)
y = nn.Dense(num_channels, use_bias=self.use_bias, name="in_project_y")(y)
y = nn.gelu(y)
gy = GetSpatialGatingWeights(
features=num_channels,
block_size=self.block_size,
grid_size=self.grid_size,
dropout_rate=self.dropout_rate,
use_bias=self.use_bias,
name="SplitHeadMultiAxisGating_y")(
y, deterministic=deterministic)
# Apply cross gating: X = X * GY, Y = Y * GX
y = y * gx
y = nn.Dense(num_channels, use_bias=self.use_bias, name="out_project_y")(y)
y = nn.Dropout(self.dropout_rate)(y, deterministic=deterministic)
y = y + shortcut_y
x = x * gy # gating x using y
x = nn.Dense(num_channels, use_bias=self.use_bias, name="out_project_x")(x)
x = nn.Dropout(self.dropout_rate)(x, deterministic=deterministic)
x = x + y + shortcut_x # get all aggregated signals
return x, y
class SAM(nn.Module):
"""Supervised attention module for multi-stage training.
Introduced by MPRNet [CVPR2021]: https://github.com/swz30/MPRNet
"""
features: int
output_channels: int = 3
use_bias: bool = True
@nn.compact
def __call__(self, x: jnp.ndarray, x_image: jnp.ndarray, *,
train: bool) -> Tuple[jnp.ndarray, jnp.ndarray]:
"""Apply the SAM module to the input and features.
Args:
x: the output features from UNet decoder with shape (h, w, c)
x_image: the input image with shape (h, w, 3)
train: Whether it is training
Returns:
A tuple of tensors (x1, image) where (x1) is the sam features used for the
next stage, and (image) is the output restored image at current stage.
"""
# Get features
x1 = Conv3x3(self.features, use_bias=self.use_bias)(x)
# Output restored image X_s
if self.output_channels == 3:
image = Conv3x3(self.output_channels, use_bias=self.use_bias)(x) + x_image
else:
image = Conv3x3(self.output_channels, use_bias=self.use_bias)(x)
# Get attention maps for features
x2 = nn.sigmoid(Conv3x3(self.features, use_bias=self.use_bias)(image))
# Get attended feature maps
x1 = x1 * x2
# Residual connection
x1 = x1 + x
return x1, image
class MAXIM(nn.Module):
"""The MAXIM model function with multi-stage and multi-scale supervision.
For more model details, please check the CVPR paper:
MAXIM: MUlti-Axis MLP for Image Processing (https://arxiv.org/abs/2201.02973)
Attributes:
features: initial hidden dimension for the input resolution.
depth: the number of downsampling depth for the model.
num_stages: how many stages to use. It will also affects the output list.
num_groups: how many blocks each stage contains.
use_bias: whether to use bias in all the conv/mlp layers.
num_supervision_scales: the number of desired supervision scales.
lrelu_slope: the negative slope parameter in leaky_relu layers.
use_global_mlp: whether to use the multi-axis gated MLP block (MAB) in each
layer.
use_cross_gating: whether to use the cross-gating MLP block (CGB) in the
skip connections and multi-stage feature fusion layers.
high_res_stages: how many stages are specificied as high-res stages. The
rest (depth - high_res_stages) are called low_res_stages.
block_size_hr: the block_size parameter for high-res stages.
block_size_lr: the block_size parameter for low-res stages.
grid_size_hr: the grid_size parameter for high-res stages.
grid_size_lr: the grid_size parameter for low-res stages.
num_bottleneck_blocks: how many bottleneck blocks.
block_gmlp_factor: the input projection factor for block_gMLP layers.
grid_gmlp_factor: the input projection factor for grid_gMLP layers.
input_proj_factor: the input projection factor for the MAB block.
channels_reduction: the channel reduction factor for SE layer.
num_outputs: the output channels.
dropout_rate: Dropout rate.
Returns:
The output contains a list of arrays consisting of multi-stage multi-scale
outputs. For example, if num_stages = num_supervision_scales = 3 (the
model used in the paper), the output specs are: outputs =
[[output_stage1_scale1, output_stage1_scale2, output_stage1_scale3],
[output_stage2_scale1, output_stage2_scale2, output_stage2_scale3],
[output_stage3_scale1, output_stage3_scale2, output_stage3_scale3],]
The final output can be retrieved by outputs[-1][-1].
"""
features: int = 64
depth: int = 3
num_stages: int = 2
num_groups: int = 1
use_bias: bool = True
num_supervision_scales: int = 1
lrelu_slope: float = 0.2
use_global_mlp: bool = True
use_cross_gating: bool = True
high_res_stages: int = 2
block_size_hr: Sequence[int] = (16, 16)
block_size_lr: Sequence[int] = (8, 8)
grid_size_hr: Sequence[int] = (16, 16)
grid_size_lr: Sequence[int] = (8, 8)
num_bottleneck_blocks: int = 1
block_gmlp_factor: int = 2
grid_gmlp_factor: int = 2
input_proj_factor: int = 2
channels_reduction: int = 4
num_outputs: int = 3
dropout_rate: float = 0.0
@nn.compact
def __call__(self, x: jnp.ndarray, *, train: bool = False) -> Any:
n, h, w, c = x.shape # input image shape
shortcuts = []
shortcuts.append(x)
# Get multi-scale input images
for i in range(1, self.num_supervision_scales):
shortcuts.append(jax.image.resize(
x, shape=(n, h // (2**i), w // (2**i), c), method="nearest"))
# store outputs from all stages and all scales
# Eg, [[(64, 64, 3), (128, 128, 3), (256, 256, 3)], # Stage-1 outputs
# [(64, 64, 3), (128, 128, 3), (256, 256, 3)],] # Stage-2 outputs
outputs_all = []
sam_features, encs_prev, decs_prev = [], [], []
for idx_stage in range(self.num_stages):
# Input convolution, get multi-scale input features
x_scales = []
for i in range(self.num_supervision_scales):
x_scale = Conv3x3(
(2**i) * self.features,
use_bias=self.use_bias,
name=f"stage_{idx_stage}_input_conv_{i}")(
shortcuts[i])
# If later stages, fuse input features with SAM features from prev stage
if idx_stage > 0:
# use larger blocksize at high-res stages
if self.use_cross_gating:
block_size = self.block_size_hr if i < self.high_res_stages else self.block_size_lr
grid_size = self.grid_size_hr if i < self.high_res_stages else self.block_size_lr
x_scale, _ = CrossGatingBlock(
features=(2**i) * self.features,
block_size=block_size,
grid_size=grid_size,
dropout_rate=self.dropout_rate,
input_proj_factor=self.input_proj_factor,
upsample_y=False,
use_bias=self.use_bias,
name=f"stage_{idx_stage}_input_fuse_sam_{i}")(
x_scale, sam_features.pop(), deterministic=not train)
else:
x_scale = Conv1x1(
(2**i) * self.features,
use_bias=self.use_bias,
name=f"stage_{idx_stage}_input_catconv_{i}")(
jnp.concatenate(
[x_scale, sam_features.pop()], axis=-1))
x_scales.append(x_scale)
# start encoder blocks
encs = []
x = x_scales[0] # First full-scale input feature
for i in range(self.depth): # 0, 1, 2
# use larger blocksize at high-res stages, vice versa.
block_size = self.block_size_hr if i < self.high_res_stages else self.block_size_lr
grid_size = self.grid_size_hr if i < self.high_res_stages else self.block_size_lr
use_cross_gating_layer = True if idx_stage > 0 else False
# Multi-scale input if multi-scale supervision
x_scale = x_scales[i] if i < self.num_supervision_scales else None
# UNet Encoder block
enc_prev = encs_prev.pop() if idx_stage > 0 else None
dec_prev = decs_prev.pop() if idx_stage > 0 else None
x, bridge = UNetEncoderBlock(
features=(2**i) * self.features,
num_groups=self.num_groups,
downsample=True,
lrelu_slope=self.lrelu_slope,
block_size=block_size,
grid_size=grid_size,
block_gmlp_factor=self.block_gmlp_factor,
grid_gmlp_factor=self.grid_gmlp_factor,
input_proj_factor=self.input_proj_factor,
channels_reduction=self.channels_reduction,
use_global_mlp=self.use_global_mlp,
dropout_rate=self.dropout_rate,
use_bias=self.use_bias,
use_cross_gating=use_cross_gating_layer,
name=f"stage_{idx_stage}_encoder_block_{i}")(
x,
skip=x_scale,
enc=enc_prev,
dec=dec_prev,
deterministic=not train)
# Cache skip signals
encs.append(bridge)
# Global MLP bottleneck blocks
for i in range(self.num_bottleneck_blocks):
x = BottleneckBlock(
block_size=self.block_size_lr,
grid_size=self.block_size_lr,
features=(2**(self.depth - 1)) * self.features,
num_groups=self.num_groups,
block_gmlp_factor=self.block_gmlp_factor,
grid_gmlp_factor=self.grid_gmlp_factor,
input_proj_factor=self.input_proj_factor,
dropout_rate=self.dropout_rate,
use_bias=self.use_bias,
channels_reduction=self.channels_reduction,
name=f"stage_{idx_stage}_global_block_{i}")(
x, deterministic=not train)
# cache global feature for cross-gating
global_feature = x
# start cross gating. Use multi-scale feature fusion
skip_features = []
for i in reversed(range(self.depth)): # 2, 1, 0
# use larger blocksize at high-res stages
block_size = self.block_size_hr if i < self.high_res_stages else self.block_size_lr
grid_size = self.grid_size_hr if i < self.high_res_stages else self.block_size_lr
# get additional multi-scale signals
signal = jnp.concatenate([
UpSampleRatio(
(2**i) * self.features,
ratio=2**(j - i),
use_bias=self.use_bias)(enc) for j, enc in enumerate(encs)
],
axis=-1)
# Use cross-gating to cross modulate features
if self.use_cross_gating:
skips, global_feature = CrossGatingBlock(
features=(2**i) * self.features,
block_size=block_size,
grid_size=grid_size,
input_proj_factor=self.input_proj_factor,
dropout_rate=self.dropout_rate,
upsample_y=True,
use_bias=self.use_bias,
name=f"stage_{idx_stage}_cross_gating_block_{i}")(
signal, global_feature, deterministic=not train)
else:
skips = Conv1x1(
(2**i) * self.features, use_bias=self.use_bias)(
signal)
skips = Conv3x3((2**i) * self.features, use_bias=self.use_bias)(skips)
skip_features.append(skips)
# start decoder. Multi-scale feature fusion of cross-gated features
outputs, decs, sam_features = [], [], []
for i in reversed(range(self.depth)):
# use larger blocksize at high-res stages
block_size = self.block_size_hr if i < self.high_res_stages else self.block_size_lr
grid_size = self.grid_size_hr if i < self.high_res_stages else self.block_size_lr
# get multi-scale skip signals from cross-gating block
signal = jnp.concatenate([
UpSampleRatio(
(2**i) * self.features,
ratio=2**(self.depth - j - 1 - i),
use_bias=self.use_bias)(skip)
for j, skip in enumerate(skip_features)
],
axis=-1)
# Decoder block
x = UNetDecoderBlock(
features=(2**i) * self.features,
num_groups=self.num_groups,
lrelu_slope=self.lrelu_slope,
block_size=block_size,
grid_size=grid_size,
block_gmlp_factor=self.block_gmlp_factor,
grid_gmlp_factor=self.grid_gmlp_factor,
input_proj_factor=self.input_proj_factor,
channels_reduction=self.channels_reduction,
use_global_mlp=self.use_global_mlp,
dropout_rate=self.dropout_rate,
use_bias=self.use_bias,
name=f"stage_{idx_stage}_decoder_block_{i}")(
x, bridge=signal, deterministic=not train)
# Cache decoder features for later-stage's usage
decs.append(x)
# output conv, if not final stage, use supervised-attention-block.
if i < self.num_supervision_scales:
if idx_stage < self.num_stages - 1: # not last stage, apply SAM
sam, output = SAM(
(2**i) * self.features,
output_channels=self.num_outputs,
use_bias=self.use_bias,
name=f"stage_{idx_stage}_supervised_attention_module_{i}")(
x, shortcuts[i], train=train)
outputs.append(output)
sam_features.append(sam)
else: # Last stage, apply output convolutions
output = Conv3x3(self.num_outputs,
use_bias=self.use_bias,
name=f"stage_{idx_stage}_output_conv_{i}")(x)
output = output + shortcuts[i]
outputs.append(output)
# Cache encoder and decoder features for later-stage's usage
encs_prev = encs[::-1]
decs_prev = decs
# Store outputs
outputs_all.append(outputs)
return outputs_all
def Model(*, variant=None, **kw):
"""Factory function to easily create a Model variant like "S".
Every model file should have this Model() function that returns the flax
model function. The function name should be fixed.
Args:
variant: UNet model variants. Options: 'S-1' | 'S-2' | 'S-3'
| 'M-1' | 'M-2' | 'M-3'
**kw: Other UNet config dicts.
Returns:
The MAXIM() model function
"""
if variant is not None:
config = {
# params: 6.108515000000001 M, GFLOPS: 93.163716608
"S-1": {
"features": 32,
"depth": 3,
"num_stages": 1,
"num_groups": 2,
"num_bottleneck_blocks": 2,
"block_gmlp_factor": 2,
"grid_gmlp_factor": 2,
"input_proj_factor": 2,
"channels_reduction": 4,
},
# params: 13.35383 M, GFLOPS: 206.743273472
"S-2": {
"features": 32,
"depth": 3,
"num_stages": 2,
"num_groups": 2,
"num_bottleneck_blocks": 2,
"block_gmlp_factor": 2,
"grid_gmlp_factor": 2,
"input_proj_factor": 2,
"channels_reduction": 4,
},
# params: 20.599145 M, GFLOPS: 320.32194560000005
"S-3": {
"features": 32,
"depth": 3,
"num_stages": 3,
"num_groups": 2,
"num_bottleneck_blocks": 2,
"block_gmlp_factor": 2,
"grid_gmlp_factor": 2,
"input_proj_factor": 2,
"channels_reduction": 4,
},
# params: 19.361219000000002 M, 308.495712256 GFLOPs
"M-1": {
"features": 64,
"depth": 3,
"num_stages": 1,
"num_groups": 2,
"num_bottleneck_blocks": 2,
"block_gmlp_factor": 2,
"grid_gmlp_factor": 2,
"input_proj_factor": 2,
"channels_reduction": 4,
},
# params: 40.83911 M, 675.25541888 GFLOPs
"M-2": {
"features": 64,
"depth": 3,
"num_stages": 2,
"num_groups": 2,
"num_bottleneck_blocks": 2,
"block_gmlp_factor": 2,
"grid_gmlp_factor": 2,
"input_proj_factor": 2,
"channels_reduction": 4,
},
# params: 62.317001 M, 1042.014666752 GFLOPs
"M-3": {
"features": 64,
"depth": 3,
"num_stages": 3,
"num_groups": 2,
"num_bottleneck_blocks": 2,
"block_gmlp_factor": 2,
"grid_gmlp_factor": 2,
"input_proj_factor": 2,
"channels_reduction": 4,
},
}[variant]
for k, v in config.items():
kw.setdefault(k, v)
return MAXIM(**kw)