OmniSVG-3B / deepsvg /model /vector_quantize_pytorch.py
OmniSVG's picture
Upload 80 files
c1ce505 verified
import torch
from torch import nn, einsum
import torch.nn.functional as F
import torch.distributed as distributed
from torch.cuda.amp import autocast
from einops import rearrange, repeat
from contextlib import contextmanager
def exists(val):
return val is not None
def default(val, d):
return val if exists(val) else d
def noop(*args, **kwargs):
pass
def l2norm(t):
return F.normalize(t, p = 2, dim = -1)
def log(t, eps = 1e-20):
return torch.log(t.clamp(min = eps))
def uniform_init(*shape):
t = torch.empty(shape)
nn.init.kaiming_uniform_(t)
return t
def gumbel_noise(t):
noise = torch.zeros_like(t).uniform_(0, 1)
return -log(-log(noise))
def gumbel_sample(t, temperature = 1., dim = -1):
if temperature == 0:
return t.argmax(dim = dim)
return ((t / temperature) + gumbel_noise(t)).argmax(dim = dim)
def ema_inplace(moving_avg, new, decay):
moving_avg.data.mul_(decay).add_(new, alpha = (1 - decay))
def laplace_smoothing(x, n_categories, eps = 1e-5):
return (x + eps) / (x.sum() + n_categories * eps)
def sample_vectors(samples, num):
num_samples, device = samples.shape[0], samples.device
if num_samples >= num:
indices = torch.randperm(num_samples, device = device)[:num]
else:
indices = torch.randint(0, num_samples, (num,), device = device)
return samples[indices]
def batched_sample_vectors(samples, num):
return torch.stack([sample_vectors(sample, num) for sample in samples.unbind(dim = 0)], dim = 0)
def pad_shape(shape, size, dim = 0):
return [size if i == dim else s for i, s in enumerate(shape)]
def sample_multinomial(total_count, probs):
device = probs.device
probs = probs.cpu()
total_count = probs.new_full((), total_count)
remainder = probs.new_ones(())
sample = torch.empty_like(probs, dtype = torch.long)
for i, p in enumerate(probs):
s = torch.binomial(total_count, p / remainder)
sample[i] = s
total_count -= s
remainder -= p
return sample.to(device)
def all_gather_sizes(x, dim):
size = torch.tensor(x.shape[dim], dtype = torch.long, device = x.device)
all_sizes = [torch.empty_like(size) for _ in range(distributed.get_world_size())]
distributed.all_gather(all_sizes, size)
return torch.stack(all_sizes)
def all_gather_variably_sized(x, sizes, dim = 0):
rank = distributed.get_rank()
all_x = []
for i, size in enumerate(sizes):
t = x if i == rank else x.new_empty(pad_shape(x.shape, size, dim))
distributed.broadcast(t, src = i, async_op = True)
all_x.append(t)
distributed.barrier()
return all_x
def sample_vectors_distributed(local_samples, num):
local_samples = rearrange(local_samples, '1 ... -> ...')
rank = distributed.get_rank()
all_num_samples = all_gather_sizes(local_samples, dim = 0)
if rank == 0:
samples_per_rank = sample_multinomial(num, all_num_samples / all_num_samples.sum())
else:
samples_per_rank = torch.empty_like(all_num_samples)
distributed.broadcast(samples_per_rank, src = 0)
samples_per_rank = samples_per_rank.tolist()
local_samples = sample_vectors(local_samples, samples_per_rank[rank])
all_samples = all_gather_variably_sized(local_samples, samples_per_rank, dim = 0)
out = torch.cat(all_samples, dim = 0)
return rearrange(out, '... -> 1 ...')
def batched_bincount(x, *, minlength):
batch, dtype, device = x.shape[0], x.dtype, x.device
target = torch.zeros(batch, minlength, dtype = dtype, device = device)
values = torch.ones_like(x)
target.scatter_add_(-1, x, values)
return target
def kmeans(
samples,
num_clusters,
num_iters = 10,
use_cosine_sim = False,
sample_fn = batched_sample_vectors,
all_reduce_fn = noop
):
num_codebooks, dim, dtype, device = samples.shape[0], samples.shape[-1], samples.dtype, samples.device
means = sample_fn(samples, num_clusters)
for _ in range(num_iters):
if use_cosine_sim:
dists = samples @ rearrange(means, 'h n d -> h d n')
else:
dists = -torch.cdist(samples, means, p = 2)
buckets = torch.argmax(dists, dim = -1)
bins = batched_bincount(buckets, minlength = num_clusters)
all_reduce_fn(bins)
zero_mask = bins == 0
bins_min_clamped = bins.masked_fill(zero_mask, 1)
new_means = buckets.new_zeros(num_codebooks, num_clusters, dim, dtype = dtype)
new_means.scatter_add_(1, repeat(buckets, 'h n -> h n d', d = dim), samples)
new_means = new_means / rearrange(bins_min_clamped, '... -> ... 1')
all_reduce_fn(new_means)
if use_cosine_sim:
new_means = l2norm(new_means)
means = torch.where(
rearrange(zero_mask, '... -> ... 1'),
means,
new_means
)
return means, bins
def batched_embedding(indices, embeds):
batch, dim = indices.shape[1], embeds.shape[-1]
indices = repeat(indices, 'h b n -> h b n d', d = dim)
embeds = repeat(embeds, 'h c d -> h b c d', b = batch)
return embeds.gather(2, indices)
# regularization losses
def orthogonal_loss_fn(t):
# eq (2) from https://arxiv.org/abs/2112.00384
h, n = t.shape[:2]
normed_codes = l2norm(t)
cosine_sim = einsum('h i d, h j d -> h i j', normed_codes, normed_codes)
return (cosine_sim ** 2).sum() / (h * n ** 2) - (1 / n)
# distance types
class EuclideanCodebook(nn.Module):
def __init__(
self,
dim,
codebook_size,
num_codebooks = 1,
kmeans_init = False,
kmeans_iters = 10,
sync_kmeans = True,
decay = 0.8,
eps = 1e-5,
threshold_ema_dead_code = 2,
use_ddp = False,
learnable_codebook = False,
sample_codebook_temp = 0
):
super().__init__()
self.decay = decay
init_fn = uniform_init if not kmeans_init else torch.zeros
embed = init_fn(num_codebooks, codebook_size, dim)
self.codebook_size = codebook_size
self.num_codebooks = num_codebooks
self.kmeans_iters = kmeans_iters
self.eps = eps
self.threshold_ema_dead_code = threshold_ema_dead_code
self.sample_codebook_temp = sample_codebook_temp
assert not (use_ddp and num_codebooks > 1 and kmeans_init), 'kmeans init is not compatible with multiple codebooks in distributed environment for now'
self.sample_fn = sample_vectors_distributed if use_ddp and sync_kmeans else batched_sample_vectors
self.kmeans_all_reduce_fn = distributed.all_reduce if use_ddp and sync_kmeans else noop
self.all_reduce_fn = distributed.all_reduce if use_ddp else noop
self.register_buffer('initted', torch.Tensor([not kmeans_init]))
self.register_buffer('cluster_size', torch.zeros(num_codebooks, codebook_size))
self.register_buffer('embed_avg', embed.clone())
self.learnable_codebook = learnable_codebook
if learnable_codebook:
self.embed = nn.Parameter(embed)
else:
self.register_buffer('embed', embed)
@torch.jit.ignore
def init_embed_(self, data):
if self.initted:
return
embed, cluster_size = kmeans(
data,
self.codebook_size,
self.kmeans_iters,
sample_fn = self.sample_fn,
all_reduce_fn = self.kmeans_all_reduce_fn
)
self.embed.data.copy_(embed)
self.embed_avg.data.copy_(embed.clone())
self.cluster_size.data.copy_(cluster_size)
self.initted.data.copy_(torch.Tensor([True]))
def replace(self, batch_samples, batch_mask):
batch_samples = l2norm(batch_samples)
for ind, (samples, mask) in enumerate(zip(batch_samples.unbind(dim = 0), batch_mask.unbind(dim = 0))):
if not torch.any(mask):
continue
sampled = self.sample_fn(rearrange(samples, '... -> 1 ...'), mask.sum().item())
self.embed.data[ind][mask] = rearrange(sampled, '1 ... -> ...')
def expire_codes_(self, batch_samples):
if self.threshold_ema_dead_code == 0:
return
expired_codes = self.cluster_size < self.threshold_ema_dead_code
if not torch.any(expired_codes):
return
batch_samples = rearrange(batch_samples, 'h ... d -> h (...) d')
self.replace(batch_samples, batch_mask = expired_codes)
@autocast(enabled = False)
def forward(self, x):
needs_codebook_dim = x.ndim < 4
x = x.float()
if needs_codebook_dim:
x = rearrange(x, '... -> 1 ...')
shape, dtype = x.shape, x.dtype
flatten = rearrange(x, 'h ... d -> h (...) d')
self.init_embed_(flatten)
embed = self.embed if not self.learnable_codebook else self.embed.detach()
dist = -torch.cdist(flatten, embed, p = 2)
embed_ind = gumbel_sample(dist, dim = -1, temperature = self.sample_codebook_temp)
embed_onehot = F.one_hot(embed_ind, self.codebook_size).type(dtype)
embed_ind = embed_ind.view(*shape[:-1])
quantize = batched_embedding(embed_ind, self.embed)
if self.training:
cluster_size = embed_onehot.sum(dim = 1)
self.all_reduce_fn(cluster_size)
ema_inplace(self.cluster_size, cluster_size, self.decay)
embed_sum = einsum('h n d, h n c -> h c d', flatten, embed_onehot)
self.all_reduce_fn(embed_sum.contiguous())
ema_inplace(self.embed_avg, embed_sum, self.decay)
cluster_size = laplace_smoothing(self.cluster_size, self.codebook_size, self.eps) * self.cluster_size.sum()
embed_normalized = self.embed_avg / rearrange(cluster_size, '... -> ... 1')
self.embed.data.copy_(embed_normalized)
self.expire_codes_(x)
if needs_codebook_dim:
quantize, embed_ind = map(lambda t: rearrange(t, '1 ... -> ...'), (quantize, embed_ind))
return quantize, embed_ind
class CosineSimCodebook(nn.Module):
def __init__(
self,
dim,
codebook_size,
num_codebooks = 1,
kmeans_init = False,
kmeans_iters = 10,
sync_kmeans = True,
decay = 0.8,
eps = 1e-5,
threshold_ema_dead_code = 2,
use_ddp = False,
learnable_codebook = False,
sample_codebook_temp = 0.
):
super().__init__()
self.decay = decay
if not kmeans_init:
embed = l2norm(uniform_init(num_codebooks, codebook_size, dim))
else:
embed = torch.zeros(num_codebooks, codebook_size, dim)
self.codebook_size = codebook_size
self.num_codebooks = num_codebooks
self.kmeans_iters = kmeans_iters
self.eps = eps
self.threshold_ema_dead_code = threshold_ema_dead_code
self.sample_codebook_temp = sample_codebook_temp
self.sample_fn = sample_vectors_distributed if use_ddp and sync_kmeans else batched_sample_vectors
self.kmeans_all_reduce_fn = distributed.all_reduce if use_ddp and sync_kmeans else noop
self.all_reduce_fn = distributed.all_reduce if use_ddp else noop
self.register_buffer('initted', torch.Tensor([not kmeans_init]))
self.register_buffer('cluster_size', torch.zeros(num_codebooks, codebook_size))
self.learnable_codebook = learnable_codebook
if learnable_codebook:
self.embed = nn.Parameter(embed)
else:
self.register_buffer('embed', embed)
@torch.jit.ignore
def init_embed_(self, data):
if self.initted:
return
embed, cluster_size = kmeans(
data,
self.codebook_size,
self.kmeans_iters,
use_cosine_sim = True,
sample_fn = self.sample_fn,
all_reduce_fn = self.kmeans_all_reduce_fn
)
self.embed.data.copy_(embed)
self.cluster_size.data.copy_(cluster_size)
self.initted.data.copy_(torch.Tensor([True]))
def replace(self, batch_samples, batch_mask):
batch_samples = l2norm(batch_samples)
for ind, (samples, mask) in enumerate(zip(batch_samples.unbind(dim = 0), batch_mask.unbind(dim = 0))):
if not torch.any(mask):
continue
sampled = self.sample_fn(rearrange(samples, '... -> 1 ...'), mask.sum().item())
self.embed.data[ind][mask] = rearrange(sampled, '1 ... -> ...')
def expire_codes_(self, batch_samples):
if self.threshold_ema_dead_code == 0:
return
expired_codes = self.cluster_size < self.threshold_ema_dead_code
if not torch.any(expired_codes):
return
batch_samples = rearrange(batch_samples, 'h ... d -> h (...) d')
self.replace(batch_samples, batch_mask = expired_codes)
@autocast(enabled = False)
def forward(self, x):
needs_codebook_dim = x.ndim < 4
x = x.float()
if needs_codebook_dim:
x = rearrange(x, '... -> 1 ...')
shape, dtype = x.shape, x.dtype
flatten = rearrange(x, 'h ... d -> h (...) d')
flatten = l2norm(flatten)
self.init_embed_(flatten)
embed = self.embed if not self.learnable_codebook else self.embed.detach()
embed = l2norm(embed)
dist = einsum('h n d, h c d -> h n c', flatten, embed)
embed_ind = gumbel_sample(dist, dim = -1, temperature = self.sample_codebook_temp)
embed_onehot = F.one_hot(embed_ind, self.codebook_size).type(dtype)
embed_ind = embed_ind.view(*shape[:-1])
quantize = batched_embedding(embed_ind, self.embed)
if self.training:
bins = embed_onehot.sum(dim = 1)
self.all_reduce_fn(bins)
ema_inplace(self.cluster_size, bins, self.decay)
zero_mask = (bins == 0)
bins = bins.masked_fill(zero_mask, 1.)
embed_sum = einsum('h n d, h n c -> h c d', flatten, embed_onehot)
self.all_reduce_fn(embed_sum)
embed_normalized = embed_sum / rearrange(bins, '... -> ... 1')
embed_normalized = l2norm(embed_normalized)
embed_normalized = torch.where(
rearrange(zero_mask, '... -> ... 1'),
embed,
embed_normalized
)
ema_inplace(self.embed, embed_normalized, self.decay)
self.expire_codes_(x)
if needs_codebook_dim:
quantize, embed_ind = map(lambda t: rearrange(t, '1 ... -> ...'), (quantize, embed_ind))
return quantize, embed_ind
# main class
class VectorQuantize(nn.Module):
def __init__(
self,
dim,
codebook_size,
codebook_dim = None,
heads = 1,
separate_codebook_per_head = False,
decay = 0.8,
eps = 1e-5,
kmeans_init = False,
kmeans_iters = 10,
sync_kmeans = True,
use_cosine_sim = False,
threshold_ema_dead_code = 0,
channel_last = True,
accept_image_fmap = False,
commitment_weight = 1.,
orthogonal_reg_weight = 0.,
orthogonal_reg_active_codes_only = False,
orthogonal_reg_max_codes = None,
sample_codebook_temp = 0.,
sync_codebook = False
):
super().__init__()
self.heads = heads
self.separate_codebook_per_head = separate_codebook_per_head
codebook_dim = default(codebook_dim, dim)
codebook_input_dim = codebook_dim * heads
requires_projection = codebook_input_dim != dim
self.project_in = nn.Linear(dim, codebook_input_dim) if requires_projection else nn.Identity()
self.project_out = nn.Linear(codebook_input_dim, dim) if requires_projection else nn.Identity()
self.eps = eps
self.commitment_weight = commitment_weight
has_codebook_orthogonal_loss = orthogonal_reg_weight > 0
self.orthogonal_reg_weight = orthogonal_reg_weight
self.orthogonal_reg_active_codes_only = orthogonal_reg_active_codes_only
self.orthogonal_reg_max_codes = orthogonal_reg_max_codes
codebook_class = EuclideanCodebook if not use_cosine_sim else CosineSimCodebook
self._codebook = codebook_class(
dim = codebook_dim,
num_codebooks = heads if separate_codebook_per_head else 1,
codebook_size = codebook_size,
kmeans_init = kmeans_init,
kmeans_iters = kmeans_iters,
sync_kmeans = sync_kmeans,
decay = decay,
eps = eps,
threshold_ema_dead_code = threshold_ema_dead_code,
use_ddp = sync_codebook,
learnable_codebook = has_codebook_orthogonal_loss,
sample_codebook_temp = sample_codebook_temp
)
self.codebook_size = codebook_size
self.accept_image_fmap = accept_image_fmap
self.channel_last = channel_last
@property
def codebook(self):
codebook = self._codebook.embed
if self.separate_codebook_per_head:
return codebook
return rearrange(codebook, '1 ... -> ...')
def forward(
self,
x,
mask = None
):
shape, device, heads, is_multiheaded, codebook_size = x.shape, x.device, self.heads, self.heads > 1, self.codebook_size
need_transpose = not self.channel_last and not self.accept_image_fmap
if self.accept_image_fmap:
height, width = x.shape[-2:]
x = rearrange(x, 'b c h w -> b (h w) c')
if need_transpose:
x = rearrange(x, 'b d n -> b n d')
x = self.project_in(x)
if is_multiheaded:
ein_rhs_eq = 'h b n d' if self.separate_codebook_per_head else '1 (b h) n d'
x = rearrange(x, f'b n (h d) -> {ein_rhs_eq}', h = heads)
quantize, embed_ind = self._codebook(x)
if self.training:
quantize = x + (quantize - x).detach()
loss = torch.tensor([0.], device = device, requires_grad = self.training)
if self.training:
if self.commitment_weight > 0:
detached_quantize = quantize.detach()
if exists(mask):
# with variable lengthed sequences
commit_loss = F.mse_loss(detached_quantize, x, reduction = 'none')
if is_multiheaded:
mask = repeat(mask, 'b n -> c (b h) n', c = commit_loss.shape[0], h = commit_loss.shape[1] // mask.shape[0])
commit_loss = commit_loss[mask].mean()
else:
commit_loss = F.mse_loss(detached_quantize, x)
loss = loss + commit_loss * self.commitment_weight
if self.orthogonal_reg_weight > 0:
codebook = self._codebook.embed
if self.orthogonal_reg_active_codes_only:
# only calculate orthogonal loss for the activated codes for this batch
unique_code_ids = torch.unique(embed_ind)
codebook = codebook[unique_code_ids]
num_codes = codebook.shape[0]
if exists(self.orthogonal_reg_max_codes) and num_codes > self.orthogonal_reg_max_codes:
rand_ids = torch.randperm(num_codes, device = device)[:self.orthogonal_reg_max_codes]
codebook = codebook[rand_ids]
orthogonal_reg_loss = orthogonal_loss_fn(codebook)
loss = loss + orthogonal_reg_loss * self.orthogonal_reg_weight
if is_multiheaded:
if self.separate_codebook_per_head:
quantize = rearrange(quantize, 'h b n d -> b n (h d)', h = heads)
embed_ind = rearrange(embed_ind, 'h b n -> b n h', h = heads)
else:
quantize = rearrange(quantize, '1 (b h) n d -> b n (h d)', h = heads)
embed_ind = rearrange(embed_ind, '1 (b h) n -> b n h', h = heads)
quantize = self.project_out(quantize)
if need_transpose:
quantize = rearrange(quantize, 'b n d -> b d n')
if self.accept_image_fmap:
quantize = rearrange(quantize, 'b (h w) c -> b c h w', h = height, w = width)
embed_ind = rearrange(embed_ind, 'b (h w) ... -> b h w ...', h = height, w = width)
return quantize, embed_ind, loss