Spaces:
Running
on
L4
Running
on
L4
import torch | |
from torch import nn, einsum | |
import torch.nn.functional as F | |
import torch.distributed as distributed | |
from torch.cuda.amp import autocast | |
from einops import rearrange, repeat | |
from contextlib import contextmanager | |
def exists(val): | |
return val is not None | |
def default(val, d): | |
return val if exists(val) else d | |
def noop(*args, **kwargs): | |
pass | |
def l2norm(t): | |
return F.normalize(t, p = 2, dim = -1) | |
def log(t, eps = 1e-20): | |
return torch.log(t.clamp(min = eps)) | |
def uniform_init(*shape): | |
t = torch.empty(shape) | |
nn.init.kaiming_uniform_(t) | |
return t | |
def gumbel_noise(t): | |
noise = torch.zeros_like(t).uniform_(0, 1) | |
return -log(-log(noise)) | |
def gumbel_sample(t, temperature = 1., dim = -1): | |
if temperature == 0: | |
return t.argmax(dim = dim) | |
return ((t / temperature) + gumbel_noise(t)).argmax(dim = dim) | |
def ema_inplace(moving_avg, new, decay): | |
moving_avg.data.mul_(decay).add_(new, alpha = (1 - decay)) | |
def laplace_smoothing(x, n_categories, eps = 1e-5): | |
return (x + eps) / (x.sum() + n_categories * eps) | |
def sample_vectors(samples, num): | |
num_samples, device = samples.shape[0], samples.device | |
if num_samples >= num: | |
indices = torch.randperm(num_samples, device = device)[:num] | |
else: | |
indices = torch.randint(0, num_samples, (num,), device = device) | |
return samples[indices] | |
def batched_sample_vectors(samples, num): | |
return torch.stack([sample_vectors(sample, num) for sample in samples.unbind(dim = 0)], dim = 0) | |
def pad_shape(shape, size, dim = 0): | |
return [size if i == dim else s for i, s in enumerate(shape)] | |
def sample_multinomial(total_count, probs): | |
device = probs.device | |
probs = probs.cpu() | |
total_count = probs.new_full((), total_count) | |
remainder = probs.new_ones(()) | |
sample = torch.empty_like(probs, dtype = torch.long) | |
for i, p in enumerate(probs): | |
s = torch.binomial(total_count, p / remainder) | |
sample[i] = s | |
total_count -= s | |
remainder -= p | |
return sample.to(device) | |
def all_gather_sizes(x, dim): | |
size = torch.tensor(x.shape[dim], dtype = torch.long, device = x.device) | |
all_sizes = [torch.empty_like(size) for _ in range(distributed.get_world_size())] | |
distributed.all_gather(all_sizes, size) | |
return torch.stack(all_sizes) | |
def all_gather_variably_sized(x, sizes, dim = 0): | |
rank = distributed.get_rank() | |
all_x = [] | |
for i, size in enumerate(sizes): | |
t = x if i == rank else x.new_empty(pad_shape(x.shape, size, dim)) | |
distributed.broadcast(t, src = i, async_op = True) | |
all_x.append(t) | |
distributed.barrier() | |
return all_x | |
def sample_vectors_distributed(local_samples, num): | |
local_samples = rearrange(local_samples, '1 ... -> ...') | |
rank = distributed.get_rank() | |
all_num_samples = all_gather_sizes(local_samples, dim = 0) | |
if rank == 0: | |
samples_per_rank = sample_multinomial(num, all_num_samples / all_num_samples.sum()) | |
else: | |
samples_per_rank = torch.empty_like(all_num_samples) | |
distributed.broadcast(samples_per_rank, src = 0) | |
samples_per_rank = samples_per_rank.tolist() | |
local_samples = sample_vectors(local_samples, samples_per_rank[rank]) | |
all_samples = all_gather_variably_sized(local_samples, samples_per_rank, dim = 0) | |
out = torch.cat(all_samples, dim = 0) | |
return rearrange(out, '... -> 1 ...') | |
def batched_bincount(x, *, minlength): | |
batch, dtype, device = x.shape[0], x.dtype, x.device | |
target = torch.zeros(batch, minlength, dtype = dtype, device = device) | |
values = torch.ones_like(x) | |
target.scatter_add_(-1, x, values) | |
return target | |
def kmeans( | |
samples, | |
num_clusters, | |
num_iters = 10, | |
use_cosine_sim = False, | |
sample_fn = batched_sample_vectors, | |
all_reduce_fn = noop | |
): | |
num_codebooks, dim, dtype, device = samples.shape[0], samples.shape[-1], samples.dtype, samples.device | |
means = sample_fn(samples, num_clusters) | |
for _ in range(num_iters): | |
if use_cosine_sim: | |
dists = samples @ rearrange(means, 'h n d -> h d n') | |
else: | |
dists = -torch.cdist(samples, means, p = 2) | |
buckets = torch.argmax(dists, dim = -1) | |
bins = batched_bincount(buckets, minlength = num_clusters) | |
all_reduce_fn(bins) | |
zero_mask = bins == 0 | |
bins_min_clamped = bins.masked_fill(zero_mask, 1) | |
new_means = buckets.new_zeros(num_codebooks, num_clusters, dim, dtype = dtype) | |
new_means.scatter_add_(1, repeat(buckets, 'h n -> h n d', d = dim), samples) | |
new_means = new_means / rearrange(bins_min_clamped, '... -> ... 1') | |
all_reduce_fn(new_means) | |
if use_cosine_sim: | |
new_means = l2norm(new_means) | |
means = torch.where( | |
rearrange(zero_mask, '... -> ... 1'), | |
means, | |
new_means | |
) | |
return means, bins | |
def batched_embedding(indices, embeds): | |
batch, dim = indices.shape[1], embeds.shape[-1] | |
indices = repeat(indices, 'h b n -> h b n d', d = dim) | |
embeds = repeat(embeds, 'h c d -> h b c d', b = batch) | |
return embeds.gather(2, indices) | |
# regularization losses | |
def orthogonal_loss_fn(t): | |
# eq (2) from https://arxiv.org/abs/2112.00384 | |
h, n = t.shape[:2] | |
normed_codes = l2norm(t) | |
cosine_sim = einsum('h i d, h j d -> h i j', normed_codes, normed_codes) | |
return (cosine_sim ** 2).sum() / (h * n ** 2) - (1 / n) | |
# distance types | |
class EuclideanCodebook(nn.Module): | |
def __init__( | |
self, | |
dim, | |
codebook_size, | |
num_codebooks = 1, | |
kmeans_init = False, | |
kmeans_iters = 10, | |
sync_kmeans = True, | |
decay = 0.8, | |
eps = 1e-5, | |
threshold_ema_dead_code = 2, | |
use_ddp = False, | |
learnable_codebook = False, | |
sample_codebook_temp = 0 | |
): | |
super().__init__() | |
self.decay = decay | |
init_fn = uniform_init if not kmeans_init else torch.zeros | |
embed = init_fn(num_codebooks, codebook_size, dim) | |
self.codebook_size = codebook_size | |
self.num_codebooks = num_codebooks | |
self.kmeans_iters = kmeans_iters | |
self.eps = eps | |
self.threshold_ema_dead_code = threshold_ema_dead_code | |
self.sample_codebook_temp = sample_codebook_temp | |
assert not (use_ddp and num_codebooks > 1 and kmeans_init), 'kmeans init is not compatible with multiple codebooks in distributed environment for now' | |
self.sample_fn = sample_vectors_distributed if use_ddp and sync_kmeans else batched_sample_vectors | |
self.kmeans_all_reduce_fn = distributed.all_reduce if use_ddp and sync_kmeans else noop | |
self.all_reduce_fn = distributed.all_reduce if use_ddp else noop | |
self.register_buffer('initted', torch.Tensor([not kmeans_init])) | |
self.register_buffer('cluster_size', torch.zeros(num_codebooks, codebook_size)) | |
self.register_buffer('embed_avg', embed.clone()) | |
self.learnable_codebook = learnable_codebook | |
if learnable_codebook: | |
self.embed = nn.Parameter(embed) | |
else: | |
self.register_buffer('embed', embed) | |
def init_embed_(self, data): | |
if self.initted: | |
return | |
embed, cluster_size = kmeans( | |
data, | |
self.codebook_size, | |
self.kmeans_iters, | |
sample_fn = self.sample_fn, | |
all_reduce_fn = self.kmeans_all_reduce_fn | |
) | |
self.embed.data.copy_(embed) | |
self.embed_avg.data.copy_(embed.clone()) | |
self.cluster_size.data.copy_(cluster_size) | |
self.initted.data.copy_(torch.Tensor([True])) | |
def replace(self, batch_samples, batch_mask): | |
batch_samples = l2norm(batch_samples) | |
for ind, (samples, mask) in enumerate(zip(batch_samples.unbind(dim = 0), batch_mask.unbind(dim = 0))): | |
if not torch.any(mask): | |
continue | |
sampled = self.sample_fn(rearrange(samples, '... -> 1 ...'), mask.sum().item()) | |
self.embed.data[ind][mask] = rearrange(sampled, '1 ... -> ...') | |
def expire_codes_(self, batch_samples): | |
if self.threshold_ema_dead_code == 0: | |
return | |
expired_codes = self.cluster_size < self.threshold_ema_dead_code | |
if not torch.any(expired_codes): | |
return | |
batch_samples = rearrange(batch_samples, 'h ... d -> h (...) d') | |
self.replace(batch_samples, batch_mask = expired_codes) | |
def forward(self, x): | |
needs_codebook_dim = x.ndim < 4 | |
x = x.float() | |
if needs_codebook_dim: | |
x = rearrange(x, '... -> 1 ...') | |
shape, dtype = x.shape, x.dtype | |
flatten = rearrange(x, 'h ... d -> h (...) d') | |
self.init_embed_(flatten) | |
embed = self.embed if not self.learnable_codebook else self.embed.detach() | |
dist = -torch.cdist(flatten, embed, p = 2) | |
embed_ind = gumbel_sample(dist, dim = -1, temperature = self.sample_codebook_temp) | |
embed_onehot = F.one_hot(embed_ind, self.codebook_size).type(dtype) | |
embed_ind = embed_ind.view(*shape[:-1]) | |
quantize = batched_embedding(embed_ind, self.embed) | |
if self.training: | |
cluster_size = embed_onehot.sum(dim = 1) | |
self.all_reduce_fn(cluster_size) | |
ema_inplace(self.cluster_size, cluster_size, self.decay) | |
embed_sum = einsum('h n d, h n c -> h c d', flatten, embed_onehot) | |
self.all_reduce_fn(embed_sum.contiguous()) | |
ema_inplace(self.embed_avg, embed_sum, self.decay) | |
cluster_size = laplace_smoothing(self.cluster_size, self.codebook_size, self.eps) * self.cluster_size.sum() | |
embed_normalized = self.embed_avg / rearrange(cluster_size, '... -> ... 1') | |
self.embed.data.copy_(embed_normalized) | |
self.expire_codes_(x) | |
if needs_codebook_dim: | |
quantize, embed_ind = map(lambda t: rearrange(t, '1 ... -> ...'), (quantize, embed_ind)) | |
return quantize, embed_ind | |
class CosineSimCodebook(nn.Module): | |
def __init__( | |
self, | |
dim, | |
codebook_size, | |
num_codebooks = 1, | |
kmeans_init = False, | |
kmeans_iters = 10, | |
sync_kmeans = True, | |
decay = 0.8, | |
eps = 1e-5, | |
threshold_ema_dead_code = 2, | |
use_ddp = False, | |
learnable_codebook = False, | |
sample_codebook_temp = 0. | |
): | |
super().__init__() | |
self.decay = decay | |
if not kmeans_init: | |
embed = l2norm(uniform_init(num_codebooks, codebook_size, dim)) | |
else: | |
embed = torch.zeros(num_codebooks, codebook_size, dim) | |
self.codebook_size = codebook_size | |
self.num_codebooks = num_codebooks | |
self.kmeans_iters = kmeans_iters | |
self.eps = eps | |
self.threshold_ema_dead_code = threshold_ema_dead_code | |
self.sample_codebook_temp = sample_codebook_temp | |
self.sample_fn = sample_vectors_distributed if use_ddp and sync_kmeans else batched_sample_vectors | |
self.kmeans_all_reduce_fn = distributed.all_reduce if use_ddp and sync_kmeans else noop | |
self.all_reduce_fn = distributed.all_reduce if use_ddp else noop | |
self.register_buffer('initted', torch.Tensor([not kmeans_init])) | |
self.register_buffer('cluster_size', torch.zeros(num_codebooks, codebook_size)) | |
self.learnable_codebook = learnable_codebook | |
if learnable_codebook: | |
self.embed = nn.Parameter(embed) | |
else: | |
self.register_buffer('embed', embed) | |
def init_embed_(self, data): | |
if self.initted: | |
return | |
embed, cluster_size = kmeans( | |
data, | |
self.codebook_size, | |
self.kmeans_iters, | |
use_cosine_sim = True, | |
sample_fn = self.sample_fn, | |
all_reduce_fn = self.kmeans_all_reduce_fn | |
) | |
self.embed.data.copy_(embed) | |
self.cluster_size.data.copy_(cluster_size) | |
self.initted.data.copy_(torch.Tensor([True])) | |
def replace(self, batch_samples, batch_mask): | |
batch_samples = l2norm(batch_samples) | |
for ind, (samples, mask) in enumerate(zip(batch_samples.unbind(dim = 0), batch_mask.unbind(dim = 0))): | |
if not torch.any(mask): | |
continue | |
sampled = self.sample_fn(rearrange(samples, '... -> 1 ...'), mask.sum().item()) | |
self.embed.data[ind][mask] = rearrange(sampled, '1 ... -> ...') | |
def expire_codes_(self, batch_samples): | |
if self.threshold_ema_dead_code == 0: | |
return | |
expired_codes = self.cluster_size < self.threshold_ema_dead_code | |
if not torch.any(expired_codes): | |
return | |
batch_samples = rearrange(batch_samples, 'h ... d -> h (...) d') | |
self.replace(batch_samples, batch_mask = expired_codes) | |
def forward(self, x): | |
needs_codebook_dim = x.ndim < 4 | |
x = x.float() | |
if needs_codebook_dim: | |
x = rearrange(x, '... -> 1 ...') | |
shape, dtype = x.shape, x.dtype | |
flatten = rearrange(x, 'h ... d -> h (...) d') | |
flatten = l2norm(flatten) | |
self.init_embed_(flatten) | |
embed = self.embed if not self.learnable_codebook else self.embed.detach() | |
embed = l2norm(embed) | |
dist = einsum('h n d, h c d -> h n c', flatten, embed) | |
embed_ind = gumbel_sample(dist, dim = -1, temperature = self.sample_codebook_temp) | |
embed_onehot = F.one_hot(embed_ind, self.codebook_size).type(dtype) | |
embed_ind = embed_ind.view(*shape[:-1]) | |
quantize = batched_embedding(embed_ind, self.embed) | |
if self.training: | |
bins = embed_onehot.sum(dim = 1) | |
self.all_reduce_fn(bins) | |
ema_inplace(self.cluster_size, bins, self.decay) | |
zero_mask = (bins == 0) | |
bins = bins.masked_fill(zero_mask, 1.) | |
embed_sum = einsum('h n d, h n c -> h c d', flatten, embed_onehot) | |
self.all_reduce_fn(embed_sum) | |
embed_normalized = embed_sum / rearrange(bins, '... -> ... 1') | |
embed_normalized = l2norm(embed_normalized) | |
embed_normalized = torch.where( | |
rearrange(zero_mask, '... -> ... 1'), | |
embed, | |
embed_normalized | |
) | |
ema_inplace(self.embed, embed_normalized, self.decay) | |
self.expire_codes_(x) | |
if needs_codebook_dim: | |
quantize, embed_ind = map(lambda t: rearrange(t, '1 ... -> ...'), (quantize, embed_ind)) | |
return quantize, embed_ind | |
# main class | |
class VectorQuantize(nn.Module): | |
def __init__( | |
self, | |
dim, | |
codebook_size, | |
codebook_dim = None, | |
heads = 1, | |
separate_codebook_per_head = False, | |
decay = 0.8, | |
eps = 1e-5, | |
kmeans_init = False, | |
kmeans_iters = 10, | |
sync_kmeans = True, | |
use_cosine_sim = False, | |
threshold_ema_dead_code = 0, | |
channel_last = True, | |
accept_image_fmap = False, | |
commitment_weight = 1., | |
orthogonal_reg_weight = 0., | |
orthogonal_reg_active_codes_only = False, | |
orthogonal_reg_max_codes = None, | |
sample_codebook_temp = 0., | |
sync_codebook = False | |
): | |
super().__init__() | |
self.heads = heads | |
self.separate_codebook_per_head = separate_codebook_per_head | |
codebook_dim = default(codebook_dim, dim) | |
codebook_input_dim = codebook_dim * heads | |
requires_projection = codebook_input_dim != dim | |
self.project_in = nn.Linear(dim, codebook_input_dim) if requires_projection else nn.Identity() | |
self.project_out = nn.Linear(codebook_input_dim, dim) if requires_projection else nn.Identity() | |
self.eps = eps | |
self.commitment_weight = commitment_weight | |
has_codebook_orthogonal_loss = orthogonal_reg_weight > 0 | |
self.orthogonal_reg_weight = orthogonal_reg_weight | |
self.orthogonal_reg_active_codes_only = orthogonal_reg_active_codes_only | |
self.orthogonal_reg_max_codes = orthogonal_reg_max_codes | |
codebook_class = EuclideanCodebook if not use_cosine_sim else CosineSimCodebook | |
self._codebook = codebook_class( | |
dim = codebook_dim, | |
num_codebooks = heads if separate_codebook_per_head else 1, | |
codebook_size = codebook_size, | |
kmeans_init = kmeans_init, | |
kmeans_iters = kmeans_iters, | |
sync_kmeans = sync_kmeans, | |
decay = decay, | |
eps = eps, | |
threshold_ema_dead_code = threshold_ema_dead_code, | |
use_ddp = sync_codebook, | |
learnable_codebook = has_codebook_orthogonal_loss, | |
sample_codebook_temp = sample_codebook_temp | |
) | |
self.codebook_size = codebook_size | |
self.accept_image_fmap = accept_image_fmap | |
self.channel_last = channel_last | |
def codebook(self): | |
codebook = self._codebook.embed | |
if self.separate_codebook_per_head: | |
return codebook | |
return rearrange(codebook, '1 ... -> ...') | |
def forward( | |
self, | |
x, | |
mask = None | |
): | |
shape, device, heads, is_multiheaded, codebook_size = x.shape, x.device, self.heads, self.heads > 1, self.codebook_size | |
need_transpose = not self.channel_last and not self.accept_image_fmap | |
if self.accept_image_fmap: | |
height, width = x.shape[-2:] | |
x = rearrange(x, 'b c h w -> b (h w) c') | |
if need_transpose: | |
x = rearrange(x, 'b d n -> b n d') | |
x = self.project_in(x) | |
if is_multiheaded: | |
ein_rhs_eq = 'h b n d' if self.separate_codebook_per_head else '1 (b h) n d' | |
x = rearrange(x, f'b n (h d) -> {ein_rhs_eq}', h = heads) | |
quantize, embed_ind = self._codebook(x) | |
if self.training: | |
quantize = x + (quantize - x).detach() | |
loss = torch.tensor([0.], device = device, requires_grad = self.training) | |
if self.training: | |
if self.commitment_weight > 0: | |
detached_quantize = quantize.detach() | |
if exists(mask): | |
# with variable lengthed sequences | |
commit_loss = F.mse_loss(detached_quantize, x, reduction = 'none') | |
if is_multiheaded: | |
mask = repeat(mask, 'b n -> c (b h) n', c = commit_loss.shape[0], h = commit_loss.shape[1] // mask.shape[0]) | |
commit_loss = commit_loss[mask].mean() | |
else: | |
commit_loss = F.mse_loss(detached_quantize, x) | |
loss = loss + commit_loss * self.commitment_weight | |
if self.orthogonal_reg_weight > 0: | |
codebook = self._codebook.embed | |
if self.orthogonal_reg_active_codes_only: | |
# only calculate orthogonal loss for the activated codes for this batch | |
unique_code_ids = torch.unique(embed_ind) | |
codebook = codebook[unique_code_ids] | |
num_codes = codebook.shape[0] | |
if exists(self.orthogonal_reg_max_codes) and num_codes > self.orthogonal_reg_max_codes: | |
rand_ids = torch.randperm(num_codes, device = device)[:self.orthogonal_reg_max_codes] | |
codebook = codebook[rand_ids] | |
orthogonal_reg_loss = orthogonal_loss_fn(codebook) | |
loss = loss + orthogonal_reg_loss * self.orthogonal_reg_weight | |
if is_multiheaded: | |
if self.separate_codebook_per_head: | |
quantize = rearrange(quantize, 'h b n d -> b n (h d)', h = heads) | |
embed_ind = rearrange(embed_ind, 'h b n -> b n h', h = heads) | |
else: | |
quantize = rearrange(quantize, '1 (b h) n d -> b n (h d)', h = heads) | |
embed_ind = rearrange(embed_ind, '1 (b h) n -> b n h', h = heads) | |
quantize = self.project_out(quantize) | |
if need_transpose: | |
quantize = rearrange(quantize, 'b n d -> b d n') | |
if self.accept_image_fmap: | |
quantize = rearrange(quantize, 'b (h w) c -> b c h w', h = height, w = width) | |
embed_ind = rearrange(embed_ind, 'b (h w) ... -> b h w ...', h = height, w = width) | |
return quantize, embed_ind, loss |