OpenSound's picture
Upload 518 files
dd9600d verified
import os
import time
import random
import argparse
import numpy as np
from tqdm import tqdm
from accelerate import Accelerator
from einops import rearrange
from cached_path import cached_path
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
# replace this with BigVGAN
import bigvgan
from model.modules import MelSpec
from network.crossdit import CrossDiT
from dataset.capspeech import CapSpeech
from utils import load_checkpoint, make_pad_mask
from utils import get_lr_scheduler, load_yaml_with_includes
from inference import eval_model
def parse_args():
parser = argparse.ArgumentParser()
# Config settings
parser.add_argument('--config-name', type=str, required=True)
parser.add_argument('--pretrained-ckpt', type=str, required=True)
# Training settings
parser.add_argument("--amp", type=str, default='fp16')
parser.add_argument('--epochs', type=int, default=15)
parser.add_argument('--num-workers', type=int, default=32)
parser.add_argument('--num-threads', type=int, default=1)
parser.add_argument('--eval-every-step', type=int, default=1000)
# save all states including optimizer every save-every-step
parser.add_argument('--save-every-step', type=int, default=1000)
parser.add_argument('--resume-from', type=str, default=None, help='Path to checkpoint to resume training')
# Log and random seed
parser.add_argument('--random-seed', type=int, default=2025)
parser.add_argument('--log-step', type=int, default=200)
parser.add_argument('--log-dir', type=str, default='./logs/')
parser.add_argument('--save-dir', type=str, default='./ckpts/')
return parser.parse_args()
def setup_directories(args, params):
args.log_dir = os.path.join(args.log_dir, params['model_name']) + '/'
args.save_dir = os.path.join(args.save_dir, params['model_name']) + '/'
os.makedirs(args.log_dir, exist_ok=True)
os.makedirs(args.save_dir, exist_ok=True)
def set_device(args):
torch.set_num_threads(args.num_threads)
if torch.cuda.is_available():
args.device = 'cuda'
torch.cuda.manual_seed_all(args.random_seed)
torch.backends.cuda.matmul.allow_tf32 = True
if torch.backends.cudnn.is_available():
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
else:
args.device = 'cpu'
def prepare_batch(batch, mel, latent_sr):
x, x_lens, y, y_lens, c, c_lens, tag = batch["x"], batch["x_lens"], batch["y"], batch["y_lens"], batch["c"], batch["c_lens"], batch["tag"]
# add len for clap embedding
x_lens = x_lens + 1
with torch.no_grad():
audio_clip = mel(y)
audio_clip = rearrange(audio_clip, 'b d n -> b n d')
y_lens = (y_lens * latent_sr).long()
return x, x_lens, audio_clip, y_lens, c, c_lens, tag
if __name__ == '__main__':
args = parse_args()
params = load_yaml_with_includes(args.config_name)
# random seed
set_device(args)
random.seed(args.random_seed)
torch.manual_seed(args.random_seed)
accelerator = Accelerator(mixed_precision=args.amp,
gradient_accumulation_steps=params['opt']['accumulation_steps'],
step_scheduler_with_optimizer=False)
# dataset
train_set = CapSpeech(**params['data']['trainset'])
train_loader = DataLoader(train_set, num_workers=args.num_workers,
batch_size=params['opt']['batch_size'], shuffle=True,
collate_fn=train_set.collate)
val_set = CapSpeech(**params['data']['valset'])
val_loader = DataLoader(val_set, num_workers=0,
batch_size=1, shuffle=False,
collate_fn=val_set.collate)
# load dit
model = CrossDiT(**params['model'])
model.load_state_dict(torch.load(args.pretrained_ckpt)["model"])
# mel spectrogram - move to accelerator device after preparation
mel = MelSpec(**params['mel'])
latent_sr = params['mel']['target_sample_rate'] / params['mel']['hop_length']
# load vocoder
vocoder = bigvgan.BigVGAN.from_pretrained('nvidia/bigvgan_v2_24khz_100band_256x', use_cuda_kernel=False)
vocoder.remove_weight_norm()
vocoder = vocoder.eval().to(accelerator.device)
# prepare opt
optimizer = torch.optim.AdamW(model.parameters(), lr=params['opt']['learning_rate'])
if args.resume_from is not None and os.path.exists(args.resume_from):
checkpoint = torch.load(args.resume_from, map_location='cpu')
model.load_state_dict(checkpoint["model"])
optimizer.load_state_dict(checkpoint["optimizer"])
global_step = checkpoint["global_step"]
start_epoch = checkpoint["epoch"] + 1 # Continue from the next epoch
print(f"Resuming training from checkpoint: {args.resume_from}, starting from epoch {start_epoch}.")
else:
global_step = 0
start_epoch = 0
lr_scheduler = get_lr_scheduler(optimizer, 'customized', **params['opt']['lr_scheduler'])
# Prepare with accelerator
(model, optimizer, lr_scheduler,
train_loader, val_loader) = accelerator.prepare(model, optimizer, lr_scheduler, train_loader, val_loader)
# Move mel and vocos to the same device as model AFTER preparation
mel = mel.to(accelerator.device)
vocoder = vocoder.to(accelerator.device)
# Add synchronization point
accelerator.wait_for_everyone()
losses = 0.0
if accelerator.is_main_process:
setup_directories(args, params)
trainable_params = sum(param.nelement() for param in model.parameters() if param.requires_grad)
print("Number of trainable parameters: %.2fM" % (trainable_params / 1e6))
# Add synchronization point
accelerator.wait_for_everyone()
# REMOVED initial evaluation to prevent deadlock
# We'll evaluate after the first epoch or at the first eval step
for epoch in range(start_epoch, args.epochs):
model.train()
# Use accelerator's progress bar for correct handling in distributed setup
progress_bar = tqdm(train_loader, disable=not accelerator.is_local_main_process)
for step, batch in enumerate(progress_bar):
with accelerator.accumulate(model):
(text, text_lens, audio_clips, audio_lens, prompt, prompt_lens, clap) = prepare_batch(batch, mel, latent_sr)
# prepare flow mathing
x1 = audio_clips
x0 = torch.randn_like(x1)
t = torch.rand((x1.shape[0],), dtype=x1.dtype, device=x1.device)
sigma = rearrange(t, 'b -> b 1 1')
noisy_x1 = (1 - sigma) * x0.clone() + sigma * x1.clone()
flow = x1.clone() - x0.clone()
# option: audio-prompt based zero-shot tts
# tts_mask = create_tts_mask(seq_len, x1.shape[1], params['opt']['mask_range'])
# # cond = x1.clone(), cond[tts_mask[..., None]] = 0
# cond = torch.where(tts_mask[..., None], torch.zeros_like(x1), x1)
cond = None
# prepare batch cfg
drop_prompt = (torch.rand(x1.shape[0]) < params['opt']['drop_spk'])
drop_text = drop_prompt & (torch.rand(x1.shape[0]) < params['opt']['drop_text'])
prompt[drop_prompt] = 0.0
prompt_lens[drop_prompt] = 1
clap[drop_text] = 0.0
text[drop_text] = -1
seq_len_audio = audio_clips.shape[1]
pad_mask = make_pad_mask(audio_lens, seq_len_audio).to(audio_clips.device)
seq_len_prompt = prompt.shape[1]
prompt_mask = make_pad_mask(prompt_lens, seq_len_prompt).to(prompt.device)
pred = model(x=noisy_x1, cond=cond,
prompt=prompt, clap=clap, text=text, time=t,
mask=pad_mask, prompt_mask=prompt_mask)
loss = F.mse_loss(pred, flow, reduction="none")
loss = loss[pad_mask].mean()
accelerator.backward(loss)
if accelerator.sync_gradients:
if 'grad_clip' in params['opt'] and params['opt']['grad_clip'] > 0:
accelerator.clip_grad_norm_(model.parameters(),
max_norm=params['opt']['grad_clip'])
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
# Fixed step counting - increment only once per actual step, not per accumulation step
if accelerator.sync_gradients:
global_step += 1
losses += loss.item()
# Add progress bar description
if accelerator.is_local_main_process:
progress_bar.set_description(f"Epoch {epoch+1}, Loss: {loss.item():.6f}")
if global_step % args.log_step == 0:
losses = losses / args.log_step # Calculate average loss
if accelerator.is_main_process:
current_time = time.asctime(time.localtime(time.time()))
epoch_info = f'Epoch: [{epoch + 1}][{args.epochs}]'
batch_info = f'Global Step: {global_step}'
loss_info = f'Loss: {losses:.6f}'
# Extract the learning rate from the optimizer
lr = optimizer.param_groups[0]['lr']
lr_info = f'Learning Rate: {lr:.6f}'
log_message = f'{current_time}\n{epoch_info} {batch_info} {loss_info} {lr_info}\n'
with open(args.log_dir + 'log.txt', mode='a') as n:
n.write(log_message)
# Reset loss accumulator
losses = 0.0
# Evaluation logic
if global_step % args.eval_every_step == 0:
# Set model to eval mode
model.eval()
# Synchronize before evaluation
accelerator.wait_for_everyone()
if accelerator.is_main_process:
# Get unwrapped model for evaluation
unwrapped_model = accelerator.unwrap_model(model)
# Run evaluation without specifying device
eval_model(unwrapped_model, vocoder, mel, val_loader, params,
steps=25, cfg=2.0,
sway_sampling_coef=-1.0,
# Remove explicit device setting
epoch=global_step, save_path=args.log_dir + 'output/', val_num=1)
# Save model checkpoint
accelerator.save({
"model": unwrapped_model.state_dict(),
"optimizer": optimizer.state_dict(),
"epoch": epoch,
"global_step": global_step,
}, args.save_dir + str(global_step) + '.pt')
# Save full state including optimizer if needed
if global_step % args.save_every_step == 0:
accelerator.save_state(f"{args.save_dir}{global_step}")
# Synchronize after evaluation and saving
accelerator.wait_for_everyone()
# Set model back to train mode
model.train()
# Synchronize at the end of each epoch
accelerator.wait_for_everyone()