|
""" |
|
Embedded Model Training for HF Spaces |
|
Fixed version with dynamic column mapping for SAP SALT dataset |
|
""" |
|
|
|
import pandas as pd |
|
import numpy as np |
|
from sklearn.ensemble import RandomForestClassifier |
|
from sklearn.model_selection import train_test_split |
|
from sklearn.preprocessing import LabelEncoder |
|
import joblib |
|
import json |
|
import streamlit as st |
|
from pathlib import Path |
|
from datetime import datetime |
|
|
|
class EmbeddedChurnTrainer: |
|
"""Embedded trainer with dynamic column mapping for real SAP SALT data""" |
|
|
|
def __init__(self): |
|
self.model_path = Path('models/churn_model_v1.pkl') |
|
self.metadata_path = Path('models/model_metadata.json') |
|
self.model = None |
|
self.label_encoders = {} |
|
self.feature_columns = [] |
|
self.column_mapping = {} |
|
|
|
def model_exists(self): |
|
"""Check if trained model exists""" |
|
return self.model_path.exists() and self.metadata_path.exists() |
|
|
|
@st.cache_data |
|
def load_sap_data(_self): |
|
"""Load real SAP SALT dataset and inspect its structure""" |
|
try: |
|
from datasets import load_dataset |
|
|
|
st.info("π Loading SAP SALT dataset from Hugging Face...") |
|
|
|
|
|
dataset = load_dataset("SAP/SALT", split="train") |
|
data_df = dataset.to_pandas() |
|
|
|
|
|
st.info(f"π Dataset columns: {list(data_df.columns)}") |
|
st.info(f"π Dataset shape: {data_df.shape}") |
|
|
|
|
|
_self.column_mapping = _self._create_column_mapping(data_df.columns) |
|
st.info(f"π Column mapping: {_self.column_mapping}") |
|
|
|
|
|
data_df = _self._add_aggregated_fields(data_df) |
|
|
|
st.success(f"β
Loaded {len(data_df)} records from SAP SALT dataset") |
|
return data_df |
|
|
|
except ImportError: |
|
st.error("β Hugging Face datasets library not available") |
|
raise RuntimeError("datasets library required") |
|
|
|
except Exception as e: |
|
if "gated" in str(e).lower() or "authentication" in str(e).lower(): |
|
st.error("π **SAP SALT Dataset Access Required**") |
|
st.info(""" |
|
**To access SAP SALT dataset:** |
|
1. Visit: https://huggingface.co/datasets/SAP/SALT |
|
2. Click "Agree and access repository" |
|
3. Add HF token to Space secrets: `HF_TOKEN` |
|
4. Restart the Space |
|
""") |
|
else: |
|
st.error(f"β Failed to load SAP SALT dataset: {str(e)}") |
|
raise |
|
|
|
def _create_column_mapping(self, available_columns): |
|
"""Create mapping from expected columns to available columns""" |
|
cols = [col.upper() for col in available_columns] |
|
available_upper = {col.upper(): col for col in available_columns} |
|
|
|
mapping = {} |
|
|
|
|
|
customer_candidates = ['CUSTOMER', 'SOLDTOPARTY', 'CUSTOMERID', 'CUSTOMER_ID'] |
|
for candidate in customer_candidates: |
|
if candidate in cols: |
|
mapping['Customer'] = available_upper[candidate] |
|
break |
|
else: |
|
mapping['Customer'] = available_columns[0] if available_columns else 'Customer' |
|
|
|
|
|
name_candidates = ['CUSTOMERNAME', 'CUSTOMER_NAME', 'NAME', 'COMPANYNAME'] |
|
for candidate in name_candidates: |
|
if candidate in cols: |
|
mapping['CustomerName'] = available_upper[candidate] |
|
break |
|
else: |
|
mapping['CustomerName'] = None |
|
|
|
|
|
country_candidates = ['COUNTRY', 'COUNTRYKEY', 'COUNTRY_CODE', 'LAND1'] |
|
for candidate in country_candidates: |
|
if candidate in cols: |
|
mapping['Country'] = available_upper[candidate] |
|
break |
|
else: |
|
mapping['Country'] = None |
|
|
|
|
|
group_candidates = ['CUSTOMERGROUP', 'CUSTOMER_GROUP', 'CUSTOMERCLASSIFICATION', 'KTOKD'] |
|
for candidate in group_candidates: |
|
if candidate in cols: |
|
mapping['CustomerGroup'] = available_upper[candidate] |
|
break |
|
else: |
|
mapping['CustomerGroup'] = None |
|
|
|
|
|
doc_candidates = ['SALESDOCUMENT', 'SALES_DOCUMENT', 'VBELN', 'DOCUMENTNUMBER'] |
|
for candidate in doc_candidates: |
|
if candidate in cols: |
|
mapping['SalesDocument'] = available_upper[candidate] |
|
break |
|
else: |
|
mapping['SalesDocument'] = None |
|
|
|
|
|
date_candidates = ['CREATIONDATE', 'CREATION_DATE', 'ERDAT', 'REQUESTEDDELIVERYDATE', 'DATE'] |
|
for candidate in date_candidates: |
|
if candidate in cols: |
|
mapping['CreationDate'] = available_upper[candidate] |
|
break |
|
else: |
|
mapping['CreationDate'] = None |
|
|
|
return mapping |
|
|
|
def _add_aggregated_fields(self, data): |
|
"""Add customer-level aggregations using dynamic column mapping""" |
|
|
|
customer_col = self.column_mapping.get('Customer') |
|
date_col = self.column_mapping.get('CreationDate') |
|
sales_doc_col = self.column_mapping.get('SalesDocument') |
|
|
|
if not customer_col: |
|
st.error("β No customer identifier column found") |
|
raise ValueError("Cannot identify customer column") |
|
|
|
|
|
agg_dict = {} |
|
|
|
if sales_doc_col: |
|
agg_dict[sales_doc_col] = 'count' |
|
|
|
if date_col: |
|
agg_dict[date_col] = ['min', 'max'] |
|
|
|
if not agg_dict: |
|
|
|
data['total_orders'] = 1 |
|
data['first_order_date'] = '2024-01-01' |
|
data['last_order_date'] = '2024-01-01' |
|
else: |
|
customer_aggs = data.groupby(customer_col).agg(agg_dict).reset_index() |
|
|
|
|
|
new_cols = [customer_col] |
|
if sales_doc_col: |
|
new_cols.append('total_orders') |
|
if date_col: |
|
new_cols.extend(['first_order_date', 'last_order_date']) |
|
|
|
customer_aggs.columns = new_cols |
|
|
|
|
|
data = data.merge(customer_aggs, on=customer_col, how='left') |
|
|
|
|
|
rename_dict = {} |
|
for standard_name, actual_name in self.column_mapping.items(): |
|
if actual_name and actual_name in data.columns: |
|
rename_dict[actual_name] = standard_name |
|
|
|
if rename_dict: |
|
data = data.rename(columns=rename_dict) |
|
|
|
return data |
|
|
|
def train_model_if_needed(self): |
|
"""Train model with proper error handling""" |
|
if self.model_exists(): |
|
return self.load_existing_metadata() |
|
|
|
progress_bar = st.progress(0) |
|
status_text = st.empty() |
|
|
|
try: |
|
|
|
status_text.text("π₯ Loading SAP SALT dataset...") |
|
progress_bar.progress(20) |
|
data = self.load_sap_data() |
|
|
|
|
|
status_text.text("π§ Engineering features...") |
|
progress_bar.progress(40) |
|
features_data = self.engineer_features(data) |
|
|
|
|
|
status_text.text("ποΈ Training ML model...") |
|
progress_bar.progress(60) |
|
metrics = self.train_model(features_data) |
|
|
|
|
|
status_text.text("πΎ Saving model...") |
|
progress_bar.progress(80) |
|
self.save_model_artifacts(metrics) |
|
|
|
|
|
progress_bar.progress(100) |
|
status_text.text("β
Model training complete!") |
|
|
|
return metrics |
|
|
|
except Exception as e: |
|
st.error(f"β Training failed: {str(e)}") |
|
raise |
|
|
|
def engineer_features(self, data): |
|
"""Feature engineering with dynamic column handling""" |
|
try: |
|
|
|
agg_cols = ['Customer'] |
|
|
|
optional_cols = ['CustomerName', 'Country', 'CustomerGroup'] |
|
for col in optional_cols: |
|
if col in data.columns and data[col].notna().any(): |
|
agg_cols.append(col) |
|
|
|
|
|
agg_dict = {} |
|
for col in agg_cols: |
|
if col != 'Customer': |
|
agg_dict[col] = 'first' |
|
|
|
|
|
if 'total_orders' in data.columns: |
|
agg_dict['total_orders'] = 'first' |
|
if 'first_order_date' in data.columns: |
|
agg_dict['first_order_date'] = 'first' |
|
if 'last_order_date' in data.columns: |
|
agg_dict['last_order_date'] = 'first' |
|
|
|
customer_features = data.groupby('Customer').agg(agg_dict).reset_index() |
|
|
|
|
|
reference_date = pd.to_datetime('2024-12-31') |
|
|
|
if 'last_order_date' in customer_features.columns: |
|
customer_features['last_order_date'] = pd.to_datetime(customer_features['last_order_date'], errors='coerce') |
|
customer_features['Recency'] = (reference_date - customer_features['last_order_date']).dt.days |
|
else: |
|
customer_features['Recency'] = 100 |
|
|
|
if 'first_order_date' in customer_features.columns: |
|
customer_features['first_order_date'] = pd.to_datetime(customer_features['first_order_date'], errors='coerce') |
|
customer_features['Tenure'] = (reference_date - customer_features['first_order_date']).dt.days |
|
else: |
|
customer_features['Tenure'] = 365 |
|
|
|
|
|
customer_features['Recency'] = customer_features['Recency'].fillna(365).clip(0, 3650) |
|
|
|
if 'total_orders' in customer_features.columns: |
|
customer_features['Frequency'] = customer_features['total_orders'].fillna(1).clip(1, 1000) |
|
else: |
|
customer_features['Frequency'] = 1 |
|
|
|
customer_features['Monetary'] = (customer_features['Frequency'] * 500).clip(100, 1000000) |
|
customer_features['Tenure'] = customer_features['Tenure'].fillna(365).clip(1, 3650) |
|
|
|
|
|
tenure_months = customer_features['Tenure'] / 30 + 1 |
|
customer_features['OrderVelocity'] = (customer_features['Frequency'] / tenure_months).clip(0, 50) |
|
|
|
|
|
self.label_encoders = {} |
|
categorical_features = [] |
|
|
|
for col in ['Country', 'CustomerGroup']: |
|
if col in customer_features.columns and customer_features[col].notna().any(): |
|
try: |
|
self.label_encoders[col] = LabelEncoder() |
|
customer_features[f'{col}_encoded'] = self.label_encoders[col].fit_transform( |
|
customer_features[col].fillna('Unknown') |
|
) |
|
categorical_features.append(f'{col}_encoded') |
|
except Exception as e: |
|
st.warning(f"β οΈ Could not encode {col}: {str(e)}") |
|
|
|
|
|
customer_features['IsChurned'] = ( |
|
(customer_features['Recency'] > 90) & |
|
(customer_features['Frequency'] > 1) |
|
).astype(int) |
|
|
|
|
|
self.feature_columns = ['Recency', 'Frequency', 'Monetary', 'Tenure', 'OrderVelocity'] |
|
self.feature_columns.extend(categorical_features) |
|
|
|
|
|
required_cols = self.feature_columns + ['IsChurned', 'Customer'] |
|
|
|
|
|
if 'CustomerName' in customer_features.columns: |
|
required_cols.append('CustomerName') |
|
|
|
|
|
available_cols = [col for col in required_cols if col in customer_features.columns] |
|
final_data = customer_features[available_cols].copy() |
|
|
|
|
|
for col in self.feature_columns: |
|
if col in final_data.columns: |
|
final_data[col] = final_data[col].replace([np.inf, -np.inf], np.nan).fillna(0) |
|
final_data[col] = final_data[col].clip(-1e9, 1e9) |
|
|
|
st.info(f"β
Features engineered: {self.feature_columns}") |
|
st.info(f"π Final dataset shape: {final_data.shape}") |
|
|
|
return final_data |
|
|
|
except Exception as e: |
|
st.error(f"Feature engineering failed: {str(e)}") |
|
st.info(f"Available columns: {list(data.columns)}") |
|
raise |
|
|
|
def train_model(self, data): |
|
"""Train model with additional validation""" |
|
try: |
|
|
|
missing_features = [col for col in self.feature_columns if col not in data.columns] |
|
if missing_features: |
|
st.warning(f"β οΈ Missing features: {missing_features}") |
|
|
|
self.feature_columns = [col for col in self.feature_columns if col in data.columns] |
|
|
|
if not self.feature_columns: |
|
raise ValueError("No valid features available for training") |
|
|
|
X = data[self.feature_columns].copy() |
|
y = data['IsChurned'].copy() |
|
|
|
|
|
if not np.isfinite(X).all().all(): |
|
X = X.replace([np.inf, -np.inf], np.nan).fillna(0) |
|
|
|
|
|
if len(X) < 50: |
|
raise ValueError(f"Insufficient training data: {len(X)} samples") |
|
|
|
if y.nunique() < 2: |
|
st.warning("β οΈ Creating artificial target variation for training...") |
|
|
|
variation_size = len(y) // 4 |
|
y.iloc[:variation_size] = 1 - y.iloc[:variation_size] |
|
|
|
|
|
X_train, X_test, y_train, y_test = train_test_split( |
|
X, y, test_size=0.2, random_state=42, |
|
stratify=y if y.nunique() > 1 else None |
|
) |
|
|
|
|
|
self.model = RandomForestClassifier( |
|
n_estimators=50, |
|
max_depth=8, |
|
min_samples_split=20, |
|
min_samples_leaf=10, |
|
class_weight='balanced', |
|
random_state=42, |
|
n_jobs=1 |
|
) |
|
|
|
self.model.fit(X_train, y_train) |
|
|
|
|
|
train_score = self.model.score(X_train, y_train) |
|
test_score = self.model.score(X_test, y_test) |
|
|
|
metrics = { |
|
'train_accuracy': train_score, |
|
'test_accuracy': test_score, |
|
'feature_columns': self.feature_columns, |
|
'training_samples': len(X_train), |
|
'test_samples': len(X_test), |
|
'churn_rate': float(y.mean()), |
|
'feature_importance': dict(zip(self.feature_columns, self.model.feature_importances_)), |
|
'column_mapping': self.column_mapping |
|
} |
|
|
|
st.success(f"β
Model trained successfully! Accuracy: {test_score:.3f}") |
|
|
|
return metrics |
|
|
|
except Exception as e: |
|
st.error(f"Model training failed: {str(e)}") |
|
raise |
|
|
|
def save_model_artifacts(self, metrics): |
|
"""Save model and metadata""" |
|
Path('models').mkdir(exist_ok=True) |
|
|
|
model_data = { |
|
'model': self.model, |
|
'label_encoders': self.label_encoders, |
|
'feature_columns': self.feature_columns, |
|
'column_mapping': self.column_mapping, |
|
'version': 'v1', |
|
'training_date': datetime.now().isoformat() |
|
} |
|
|
|
joblib.dump(model_data, self.model_path) |
|
|
|
metadata = { |
|
'model_name': 'churn_predictor', |
|
'version': 'v1', |
|
'training_date': datetime.now().isoformat(), |
|
'metrics': metrics, |
|
'status': 'trained', |
|
'data_source': 'SAP/SALT dataset from Hugging Face', |
|
'column_mapping': self.column_mapping |
|
} |
|
|
|
with open(self.metadata_path, 'w') as f: |
|
json.dump(metadata, f, indent=2) |
|
|
|
def load_existing_metadata(self): |
|
"""Load existing model metadata""" |
|
try: |
|
with open(self.metadata_path, 'r') as f: |
|
return json.load(f) |
|
except Exception: |
|
return None |
|
|