ZO1_Network / README.md
Pbagnaninchi's picture
Update README.md
271709e verified
metadata
title: ZO-1 Network Analysis (RIS + TiJOR)
emoji: 🔬
colorFrom: purple
colorTo: blue
sdk: gradio
sdk_version: 5.44.1
app_file: app.py
python_version: 3.11
tags:
  - gradio
  - bioimage
  - segmentation
  - cellpose
  - computer-vision

ZO-1 Network Analysis Tool

Gradio app for AI-powered segmentation and quantification of ZO-1 tight junction networks using:

  • RIS (Radial Integrity Score): concentric circle crossings per pixel length
  • TiJOR (Rectangular method): rectangle perimeter crossings per pixel length

How to use

  1. Upload a ZO-1 image (TIFF, PNG, JPG). 16-bit TIFFs are supported.
  2. In Segmentation:
    • Adjust Cell Diameter Estimate (px) if results are off
    • Scale Factor 1.0 = full size (lower if slow)
    • AI Contour Validation can improve contours but is slower
  3. In Analysis:
    • Pick RIS (circles) or TiJOR (rectangles)
    • Tune parameters (radii/rectangles, min separation)
    • Optionally show contours/geometry/cross-sections
  4. In Export:
    • Download CSV or Text report; files are named <image>_RIS.csv/.txt or <image>_TiJOR.csv/.txt

Features

  • Cellpose-based segmentation (GPU or CPU)
  • Robust TIFF handling (8/16-bit)
  • RIS and TiJOR analyses with visual overlays
  • Exports with image-based filenames

Parameters

  • Segmentation: Cell Diameter (px), Scale Factor, AI Validation
  • RIS: κ (packing factor), min/max radius (%), number of circles, min separation (px)
  • TiJOR: initial/max rectangle size (%), steps, min cross-section distance (px)

Notes

  • Large images can be slow; reduce Scale Factor if needed
  • GPU is recommended for faster segmentation

Acknowledgements

  • Built with Gradio and Cellpose