Spaces:
Running
Running
# Installation Guide | |
This guide covers installation for different GPU generations and operating systems. | |
## Requirements | |
- Python 3.10.9 | |
- Conda or Python venv | |
- Compatible GPU (RTX 10XX or newer recommended) | |
## Installation for RTX 10XX to RTX 40XX (Stable) | |
This installation uses PyTorch 2.6.0 which is well-tested and stable. | |
### Step 1: Download and Setup Environment | |
```shell | |
# Clone the repository | |
git clone https://github.com/deepbeepmeep/Wan2GP.git | |
cd Wan2GP | |
# Create Python 3.10.9 environment using conda | |
conda create -n wan2gp python=3.10.9 | |
conda activate wan2gp | |
``` | |
### Step 2: Install PyTorch | |
```shell | |
# Install PyTorch 2.6.0 with CUDA 12.4 | |
pip install torch==2.6.0 torchvision torchaudio --index-url https://download.pytorch.org/whl/test/cu124 | |
``` | |
### Step 3: Install Dependencies | |
```shell | |
# Install core dependencies | |
pip install -r requirements.txt | |
``` | |
### Step 4: Optional Performance Optimizations | |
#### Sage Attention (30% faster) | |
```shell | |
# Windows only: Install Triton | |
pip install triton-windows | |
# For both Windows and Linux | |
pip install sageattention==1.0.6 | |
``` | |
#### Sage 2 Attention (40% faster) | |
```shell | |
# Windows | |
pip install triton-windows | |
pip install https://github.com/woct0rdho/SageAttention/releases/download/v2.1.1-windows/sageattention-2.1.1+cu126torch2.6.0-cp310-cp310-win_amd64.whl | |
# Linux (manual compilation required) | |
git clone https://github.com/thu-ml/SageAttention | |
cd SageAttention | |
pip install -e . | |
``` | |
#### Flash Attention | |
```shell | |
# May require CUDA kernel compilation on Windows | |
pip install flash-attn==2.7.2.post1 | |
``` | |
## Installation for RTX 50XX (Beta) | |
RTX 50XX GPUs require PyTorch 2.7.0 (beta). This version may be less stable. | |
⚠️ **Important:** Use Python 3.10 for compatibility with pip wheels. | |
### Step 1: Setup Environment | |
```shell | |
# Clone and setup (same as above) | |
git clone https://github.com/deepbeepmeep/Wan2GP.git | |
cd Wan2GP | |
conda create -n wan2gp python=3.10.9 | |
conda activate wan2gp | |
``` | |
### Step 2: Install PyTorch Beta | |
```shell | |
# Install PyTorch 2.7.0 with CUDA 12.8 | |
pip install torch==2.7.0 torchvision torchaudio --index-url https://download.pytorch.org/whl/test/cu128 | |
``` | |
### Step 3: Install Dependencies | |
```shell | |
pip install -r requirements.txt | |
``` | |
### Step 4: Optional Optimizations for RTX 50XX | |
#### Sage Attention | |
```shell | |
# Windows | |
pip install triton-windows | |
pip install sageattention==1.0.6 | |
# Linux | |
pip install sageattention==1.0.6 | |
``` | |
#### Sage 2 Attention | |
```shell | |
# Windows | |
pip install triton-windows | |
pip install https://github.com/woct0rdho/SageAttention/releases/download/v2.1.1-windows/sageattention-2.1.1+cu128torch2.7.0-cp310-cp310-win_amd64.whl | |
# Linux (manual compilation) | |
git clone https://github.com/thu-ml/SageAttention | |
cd SageAttention | |
pip install -e . | |
``` | |
## Attention Modes | |
WanGP supports several attention implementations: | |
- **SDPA** (default): Available by default with PyTorch | |
- **Sage**: 30% speed boost with small quality cost | |
- **Sage2**: 40% speed boost | |
- **Flash**: Good performance, may be complex to install on Windows | |
## Performance Profiles | |
Choose a profile based on your hardware: | |
- **Profile 3 (LowRAM_HighVRAM)**: Loads entire model in VRAM, requires 24GB VRAM for 8-bit quantized 14B model | |
- **Profile 4 (LowRAM_LowVRAM)**: Default, loads model parts as needed, slower but lower VRAM requirement | |
## Troubleshooting | |
### Sage Attention Issues | |
If Sage attention doesn't work: | |
1. Check if Triton is properly installed | |
2. Clear Triton cache | |
3. Fallback to SDPA attention: | |
```bash | |
python wgp.py --attention sdpa | |
``` | |
### Memory Issues | |
- Use lower resolution or shorter videos | |
- Enable quantization (default) | |
- Use Profile 4 for lower VRAM usage | |
- Consider using 1.3B models instead of 14B models | |
### GPU Compatibility | |
- RTX 10XX, 20XX: Supported with SDPA attention | |
- RTX 30XX, 40XX: Full feature support | |
- RTX 50XX: Beta support with PyTorch 2.7.0 | |
For more troubleshooting, see [TROUBLESHOOTING.md](TROUBLESHOOTING.md) |