Spaces:
Running
Running
File size: 55,084 Bytes
f042c7f cd9c7e8 f042c7f cd9c7e8 f042c7f cd9c7e8 f042c7f cd9c7e8 5d3018d cd9c7e8 f042c7f cd9c7e8 f042c7f cd9c7e8 f042c7f cd9c7e8 f042c7f cd9c7e8 f042c7f cd9c7e8 f042c7f cd9c7e8 f042c7f cd9c7e8 f042c7f cd9c7e8 f042c7f cd9c7e8 f042c7f cd9c7e8 f042c7f cd9c7e8 f042c7f cd9c7e8 f042c7f cd9c7e8 f042c7f cd9c7e8 4bb159b cd9c7e8 4bb159b cd9c7e8 4bb159b cd9c7e8 4bb159b cd9c7e8 4bb159b cd9c7e8 4bb159b cd9c7e8 f042c7f 4bb159b cd9c7e8 4bb159b cd9c7e8 4bb159b cd9c7e8 4bb159b cd9c7e8 f042c7f 4bb159b cd9c7e8 4bb159b cd9c7e8 f042c7f 4bb159b cd9c7e8 4bb159b cd9c7e8 4bb159b cd9c7e8 4bb159b cd9c7e8 4bb159b cd9c7e8 4bb159b cd9c7e8 4bb159b cd9c7e8 4bb159b cd9c7e8 4bb159b cd9c7e8 4bb159b cd9c7e8 4bb159b cd9c7e8 f042c7f 4bb159b cd9c7e8 4bb159b cd9c7e8 4bb159b cd9c7e8 4bb159b cd9c7e8 4bb159b cd9c7e8 4bb159b cd9c7e8 4bb159b cd9c7e8 4bb159b cd9c7e8 4bb159b cd9c7e8 4bb159b cd9c7e8 4bb159b cd9c7e8 4bb159b cd9c7e8 4bb159b cd9c7e8 4bb159b cd9c7e8 f042c7f cd9c7e8 f042c7f cd9c7e8 f042c7f cd9c7e8 f042c7f cd9c7e8 f042c7f cd9c7e8 f042c7f cd9c7e8 4bb159b cd9c7e8 4bb159b cd9c7e8 4bb159b f042c7f cd9c7e8 4bb159b cd9c7e8 4bb159b cd9c7e8 4bb159b f042c7f cd9c7e8 4bb159b f042c7f cd9c7e8 4bb159b cd9c7e8 f042c7f 4bb159b cd9c7e8 f042c7f cd9c7e8 f042c7f 4bb159b f042c7f 4bb159b f042c7f cd9c7e8 f042c7f 4bb159b cd9c7e8 4bb159b cd9c7e8 4bb159b f042c7f cd9c7e8 4bb159b cd9c7e8 4bb159b f042c7f cd9c7e8 4bb159b f042c7f 4bb159b f042c7f cd9c7e8 4bb159b f042c7f 4bb159b cd9c7e8 4bb159b f042c7f cd9c7e8 f042c7f 4bb159b cd9c7e8 f042c7f cd9c7e8 f042c7f 4bb159b f042c7f 4bb159b cd9c7e8 f042c7f cd9c7e8 4bb159b cd9c7e8 f042c7f 4bb159b cd9c7e8 4bb159b cd9c7e8 4bb159b cd9c7e8 f042c7f cd9c7e8 4bb159b cd9c7e8 4bb159b cd9c7e8 4bb159b cd9c7e8 4bb159b cd9c7e8 4bb159b cd9c7e8 4bb159b cd9c7e8 4bb159b cd9c7e8 4bb159b cd9c7e8 4bb159b cd9c7e8 f042c7f 4bb159b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 |
#!/usr/bin/env python
import os
import json
import logging
import random
import asyncio
import aiohttp
from datetime import datetime, timedelta
from typing import Dict, Any, List, Optional, Tuple
from pydantic import BaseModel, Field
import gradio as gr
import google.generativeai as genai
from dataclasses import dataclass
# Setup logging
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s [%(levelname)s] %(message)s",
)
logger = logging.getLogger(__name__)
# ========== CONFIGURATION ==========
@dataclass
class Config:
GEMINI_API_KEY: str = os.getenv("GEMINI_API_KEY", "")
SERPER_API_KEY: str = os.getenv("SERPER_API_KEY", "")
GEMINI_MODEL: str = "gemini-2.0-flash"
MAX_RETRIES: int = 3
TIMEOUT: int = 30
config = Config()
# ========== ENHANCED DATA MODELS ==========
class UserVerification(BaseModel):
user_id: str = Field(..., description="User ID")
name: str = Field(..., description="User name")
email: str = Field(..., description="User email")
is_verified: bool = Field(..., description="KYC verification status")
verification_level: str = Field(..., description="Verification level: basic, standard, premium")
risk_score: float = Field(..., description="Risk score 0-1")
ai_behavioral_analysis: str = Field("", description="AI analysis of user behavior")
class MarketIntelligence(BaseModel):
average_resale_price: float = Field(0.0, description="Average market resale price")
price_trend: str = Field("stable", description="Price trend: rising, falling, stable")
market_sentiment: str = Field("neutral", description="Market sentiment: positive, negative, neutral")
similar_events_pricing: List[Dict] = Field(default_factory=list, description="Similar events pricing data")
news_impact: str = Field("", description="News impact on pricing")
social_media_buzz: str = Field("", description="Social media sentiment analysis")
supply_demand_ratio: float = Field(1.0, description="Supply vs demand ratio")
class ScalpingDetection(BaseModel):
is_scalper: bool = Field(..., description="Whether user is detected as scalper")
confidence: float = Field(..., description="Detection confidence 0-1")
flags: List[str] = Field(..., description="Suspicious activity flags")
purchase_velocity: int = Field(..., description="Number of purchases in last hour")
ip_duplicates: int = Field(..., description="Number of accounts from same IP")
ai_pattern_analysis: str = Field("", description="AI analysis of behavior patterns")
network_connections: List[str] = Field(default_factory=list, description="Connected suspicious accounts")
class PricingRecommendation(BaseModel):
original_price: float = Field(..., description="Original ticket price")
recommended_resale_price: float = Field(..., description="Recommended resale price")
market_fair_price: float = Field(..., description="AI-calculated fair market price")
demand_level: str = Field(..., description="Current demand level")
price_adjustment_reason: str = Field(..., description="Reason for price adjustment")
profit_margin: Optional[float] = Field(None, description="Profit margin percentage")
loss_percentage: Optional[float] = Field(None, description="Loss percentage if selling below cost")
market_intelligence: MarketIntelligence = Field(default_factory=MarketIntelligence)
ai_pricing_rationale: str = Field("", description="AI explanation for pricing decision")
class ResaleCompliance(BaseModel):
is_compliant: bool = Field(..., description="Whether resale is policy compliant")
violations: List[str] = Field(..., description="List of policy violations")
resale_allowed: bool = Field(..., description="Whether resale is allowed")
max_allowed_price: float = Field(..., description="Maximum allowed resale price")
recommendation: str = Field(..., description="Compliance recommendation")
ai_policy_analysis: str = Field("", description="AI analysis of policy compliance")
class IntelligentReport(BaseModel):
verification: UserVerification
scalping_detection: ScalpingDetection
pricing: PricingRecommendation
compliance: ResaleCompliance
final_decision: str = Field(..., description="Final system decision")
action_items: List[str] = Field(..., description="Recommended actions")
ai_summary: str = Field("", description="AI-generated executive summary")
confidence_score: float = Field(0.0, description="Overall AI confidence in decision")
# ========== AI INTEGRATION SERVICES ==========
class GeminiAIService:
"""Service for interacting with Google's Gemini AI"""
def __init__(self):
if not config.GEMINI_API_KEY:
logger.warning("GEMINI_API_KEY not found. Using fallback responses.")
self.enabled = False
return
try:
genai.configure(api_key=config.GEMINI_API_KEY)
self.model = genai.GenerativeModel(config.GEMINI_MODEL)
self.enabled = True
logger.info("Gemini AI service initialized successfully")
except Exception as e:
logger.error(f"Failed to initialize Gemini AI: {e}")
self.enabled = False
async def analyze_user_behavior(self, user_data: Dict, transaction_history: List[Dict]) -> str:
"""Analyze user behavior patterns using AI"""
if not self.enabled:
return self._fallback_user_analysis(user_data)
try:
prompt = f"""
As an expert fraud detection analyst, analyze this user's behavior for potential ticket scalping:
User Profile:
- Name: {user_data.get('name', 'N/A')}
- Email: {user_data.get('email', 'N/A')}
- User ID: {user_data.get('user_id', 'N/A')}
- Risk Factors: {user_data.get('risk_factors', [])}
Transaction History: {json.dumps(transaction_history, indent=2)}
Provide a concise behavioral analysis focusing on:
1. Email legitimacy indicators
2. Name authenticity assessment
3. Overall trustworthiness score
4. Red flags or green flags
Keep response under 150 words and be specific.
"""
response = self.model.generate_content(prompt)
return response.text if response.text else self._fallback_user_analysis(user_data)
except Exception as e:
logger.error(f"Gemini AI analysis failed: {e}")
return self._fallback_user_analysis(user_data)
async def analyze_scalping_patterns(self, user_id: str, transaction_data: Dict, network_data: List[Dict]) -> str:
"""Detect scalping patterns using advanced AI analysis"""
if not self.enabled:
return self._fallback_scalping_analysis(transaction_data)
try:
prompt = f"""
As a specialized anti-scalping detection expert, analyze this transaction for suspicious patterns:
Transaction Details:
- User: {user_id}
- Ticket Quantity: {transaction_data.get('ticket_quantity', 0)}
- Event: {transaction_data.get('event_name', 'N/A')}
- Purchase Velocity: {transaction_data.get('purchase_velocity', 0)} purchases/hour
- IP Duplicates: {transaction_data.get('ip_duplicates', 0)} accounts
Network Analysis: {json.dumps(network_data, indent=2)}
Assess for:
1. Bot-like purchasing behavior
2. Coordinated scalping networks
3. Unusual timing patterns
4. Risk level (Low/Medium/High)
Provide analysis in under 200 words with specific indicators.
"""
response = self.model.generate_content(prompt)
return response.text if response.text else self._fallback_scalping_analysis(transaction_data)
except Exception as e:
logger.error(f"Scalping pattern analysis failed: {e}")
return self._fallback_scalping_analysis(transaction_data)
async def generate_pricing_rationale(self, market_data: Dict, pricing_factors: Dict) -> str:
"""Generate AI-powered pricing rationale"""
if not self.enabled:
return self._fallback_pricing_analysis(pricing_factors)
try:
prompt = f"""
As a market pricing expert, analyze this ticket resale pricing scenario:
Market Conditions:
- Average Market Price: ${market_data.get('average_resale_price', 0):.2f}
- Price Trend: {market_data.get('price_trend', 'stable')}
- Market Sentiment: {market_data.get('market_sentiment', 'neutral')}
- Supply/Demand Ratio: {market_data.get('supply_demand_ratio', 1.0)}
Pricing Analysis:
- Original Price: ${pricing_factors.get('original_price', 0):.2f}
- Proposed Price: ${pricing_factors.get('proposed_price', 0):.2f}
- Recommended Price: ${pricing_factors.get('recommended_price', 0):.2f}
- Demand Level: {pricing_factors.get('demand_level', 'medium')}
Provide:
1. Fair market assessment
2. Consumer protection analysis
3. Pricing recommendation rationale
4. Risk factors for buyer/seller
Keep under 250 words, be specific and actionable.
"""
response = self.model.generate_content(prompt)
return response.text if response.text else self._fallback_pricing_analysis(pricing_factors)
except Exception as e:
logger.error(f"Pricing rationale generation failed: {e}")
return self._fallback_pricing_analysis(pricing_factors)
async def analyze_policy_compliance(self, transaction_data: Dict, policy_violations: List[str]) -> str:
"""Analyze policy compliance with AI reasoning"""
if not self.enabled:
return self._fallback_compliance_analysis(policy_violations)
try:
prompt = f"""
As a policy compliance officer, evaluate this transaction:
Transaction:
- User: {transaction_data.get('user_id', 'N/A')}
- Price Ratio: {transaction_data.get('price_ratio', 1.0)}x original
- Event: {transaction_data.get('event_name', 'N/A')}
- Proposed Price: ${transaction_data.get('proposed_price', 0):.2f}
- Original Price: ${transaction_data.get('original_price', 0):.2f}
Policy Violations Detected: {policy_violations}
Provide:
1. Severity assessment of each violation
2. Consumer protection implications
3. Recommended enforcement actions
4. Appeal process guidance (if applicable)
Be fair but firm in protecting consumers. Under 200 words.
"""
response = self.model.generate_content(prompt)
return response.text if response.text else self._fallback_compliance_analysis(policy_violations)
except Exception as e:
logger.error(f"Policy compliance analysis failed: {e}")
return self._fallback_compliance_analysis(policy_violations)
async def generate_executive_summary(self, full_report: Dict) -> Tuple[str, float]:
"""Generate an executive summary with confidence score"""
if not self.enabled:
return self._fallback_executive_summary(full_report)
try:
prompt = f"""
Create an executive summary for this anti-scalping analysis:
Decision: {full_report.get('final_decision', 'UNKNOWN')}
User Verified: {full_report.get('verification', {}).get('is_verified', False)}
Scalper Detected: {full_report.get('scalping_detection', {}).get('is_scalper', False)}
Violations: {full_report.get('compliance', {}).get('violations', [])}
Provide:
1. One sentence decision summary
2. Key risk factors (2-3 points)
3. Confidence level (0.0-1.0)
Format: SUMMARY | CONFIDENCE_SCORE
Example: "Transaction approved with moderate monitoring recommended due to acceptable risk profile. | 0.85"
Keep summary under 100 words.
"""
response = self.model.generate_content(prompt)
if response.text and '|' in response.text:
parts = response.text.split('|')
summary = parts[0].strip()
try:
confidence = float(parts[1].strip())
confidence = max(0.0, min(1.0, confidence)) # Ensure 0-1 range
except:
confidence = 0.7
return summary, confidence
else:
return self._fallback_executive_summary(full_report)
except Exception as e:
logger.error(f"Executive summary generation failed: {e}")
return self._fallback_executive_summary(full_report)
# Fallback methods when AI is not available
def _fallback_user_analysis(self, user_data: Dict) -> str:
risk_factors = user_data.get('risk_factors', [])
if not risk_factors:
return "User profile appears legitimate with standard email domain and proper name format. No immediate red flags detected."
else:
return f"User profile shows some concerns: {', '.join(risk_factors)}. Recommend enhanced verification for high-value transactions."
def _fallback_scalping_analysis(self, transaction_data: Dict) -> str:
velocity = transaction_data.get('purchase_velocity', 0)
quantity = transaction_data.get('ticket_quantity', 0)
if velocity > 5 or quantity > 6:
return "High-risk transaction pattern detected. Rapid purchasing behavior and bulk quantities suggest potential scalping activity. Recommend blocking pending manual review."
elif velocity > 3 or quantity > 4:
return "Moderate risk factors present. Purchase velocity and quantity are elevated but within acceptable ranges for enthusiastic fans. Monitor closely."
else:
return "Normal purchasing behavior observed. Transaction patterns consistent with legitimate fan purchases."
def _fallback_pricing_analysis(self, pricing_factors: Dict) -> str:
original = pricing_factors.get('original_price', 0)
proposed = pricing_factors.get('proposed_price', 0)
ratio = proposed / original if original > 0 else 1.0
if ratio > 2.0:
return "Proposed price significantly exceeds policy limits (2x original). High risk of consumer exploitation. Recommend price reduction to comply with anti-gouging policies."
elif ratio > 1.5:
return "Price markup is substantial but within policy limits. Market demand may justify premium, but monitor for consumer complaints."
else:
return "Pricing appears fair and reasonable. Markup reflects normal market dynamics and demand levels."
def _fallback_compliance_analysis(self, violations: List[str]) -> str:
if not violations:
return "Transaction complies with all anti-scalping policies. No violations detected. Safe to proceed with standard monitoring."
else:
severity = "High" if len(violations) > 2 else "Medium" if len(violations) > 1 else "Low"
return f"{severity} severity violations detected: {', '.join(violations)}. Recommend blocking transaction pending policy review and user education."
def _fallback_executive_summary(self, full_report: Dict) -> Tuple[str, float]:
decision = full_report.get('final_decision', 'UNKNOWN')
violations = len(full_report.get('compliance', {}).get('violations', []))
if decision == "APPROVED":
summary = "Transaction approved with standard monitoring protocols. Risk factors within acceptable thresholds."
confidence = 0.8 - (violations * 0.1)
else:
summary = "Transaction blocked due to policy violations and elevated risk indicators. Manual review required."
confidence = 0.9 - (violations * 0.05)
return summary, max(0.1, min(0.95, confidence))
class SerperAPIService:
"""Service for real-time market data using Serper API"""
def __init__(self):
if not config.SERPER_API_KEY:
logger.warning("SERPER_API_KEY not found. Using simulated market data.")
self.enabled = False
else:
self.enabled = True
self.base_url = "https://google.serper.dev/search"
logger.info("Serper API service initialized successfully")
async def get_market_intelligence(self, event_name: str, ticket_type: str, location: str = "") -> MarketIntelligence:
"""Fetch real-time market intelligence for ticket pricing"""
if not self.enabled:
return self._simulate_market_data(event_name, ticket_type)
try:
# Search for current ticket prices and market data
queries = [
f"{event_name} {ticket_type} ticket prices resale",
f"{event_name} tickets secondary market pricing",
f"{event_name} ticket demand social media"
]
all_results = []
async with aiohttp.ClientSession() as session:
for query in queries:
result = await self._search_query(session, query)
if result:
all_results.extend(result.get('organic', []))
# Analyze results for market intelligence
return await self._analyze_market_data(all_results, event_name)
except Exception as e:
logger.error(f"Market intelligence gathering failed: {e}")
return self._simulate_market_data(event_name, ticket_type)
async def _search_query(self, session: aiohttp.ClientSession, query: str) -> Optional[Dict]:
"""Execute a search query via Serper API"""
try:
headers = {
"X-API-KEY": config.SERPER_API_KEY,
"Content-Type": "application/json"
}
payload = {
"q": query,
"num": 5,
"gl": "us",
"hl": "en"
}
async with session.post(self.base_url, headers=headers, json=payload, timeout=config.TIMEOUT) as response:
if response.status == 200:
return await response.json()
else:
logger.warning(f"Serper API returned status {response.status}")
return None
except Exception as e:
logger.error(f"Serper API query failed: {e}")
return None
async def _analyze_market_data(self, search_results: List[Dict], event_name: str) -> MarketIntelligence:
"""Analyze search results to extract market intelligence"""
try:
sentiment_indicators = []
news_items = []
for result in search_results[:10]: # Limit processing
title = result.get('title', '').lower()
snippet = result.get('snippet', '').lower()
# Look for sentiment indicators
if any(word in title + snippet for word in ['sold out', 'high demand', 'popular', 'rush']):
sentiment_indicators.append('high_demand')
elif any(word in title + snippet for word in ['available', 'discount', 'cheap']):
sentiment_indicators.append('low_demand')
# Look for news impact
if any(word in title + snippet for word in ['news', 'announced', 'cancelled', 'postponed']):
news_items.append(result)
# Calculate market metrics
sentiment = self._calculate_sentiment(sentiment_indicators)
trend = random.choice(["rising", "stable", "falling"]) # Simplified
avg_price = random.uniform(100, 800) # Simplified
return MarketIntelligence(
average_resale_price=avg_price,
price_trend=trend,
market_sentiment=sentiment,
similar_events_pricing=[],
news_impact=f"Analyzed {len(news_items)} news items affecting {event_name} pricing",
social_media_buzz=f"Market sentiment derived from {len(sentiment_indicators)} social indicators",
supply_demand_ratio=self._calculate_supply_demand_ratio(sentiment_indicators)
)
except Exception as e:
logger.error(f"Market data analysis failed: {e}")
return self._simulate_market_data(event_name, "standard")
def _simulate_market_data(self, event_name: str, ticket_type: str) -> MarketIntelligence:
"""Generate simulated market data when API is unavailable"""
# Generate realistic market simulation based on event characteristics
base_price = 200
if "vip" in ticket_type.lower():
base_price = 500
elif "premium" in ticket_type.lower():
base_price = 350
# Simulate market conditions
sentiment_score = random.uniform(0, 1)
if sentiment_score > 0.7:
sentiment = "positive"
trend = "rising"
avg_price = base_price * random.uniform(1.2, 1.8)
supply_demand = random.uniform(0.3, 0.7)
elif sentiment_score > 0.3:
sentiment = "neutral"
trend = "stable"
avg_price = base_price * random.uniform(0.9, 1.3)
supply_demand = random.uniform(0.8, 1.2)
else:
sentiment = "negative"
trend = "falling"
avg_price = base_price * random.uniform(0.6, 1.1)
supply_demand = random.uniform(1.2, 2.0)
return MarketIntelligence(
average_resale_price=avg_price,
price_trend=trend,
market_sentiment=sentiment,
similar_events_pricing=[],
news_impact=f"Simulated market analysis for {event_name}",
social_media_buzz="Market sentiment analysis based on event characteristics",
supply_demand_ratio=supply_demand
)
def _calculate_sentiment(self, indicators: List[str]) -> str:
"""Calculate overall market sentiment"""
if not indicators:
return "neutral"
positive_count = sum(1 for i in indicators if i == 'high_demand')
negative_count = sum(1 for i in indicators if i == 'low_demand')
if positive_count > negative_count:
return "positive"
elif negative_count > positive_count:
return "negative"
else:
return "neutral"
def _calculate_supply_demand_ratio(self, indicators: List[str]) -> float:
"""Calculate supply vs demand ratio"""
high_demand = sum(1 for i in indicators if i == 'high_demand')
low_demand = sum(1 for i in indicators if i == 'low_demand')
if high_demand > low_demand:
return random.uniform(0.3, 0.7) # Low supply, high demand
elif low_demand > high_demand:
return random.uniform(1.3, 2.0) # High supply, low demand
else:
return random.uniform(0.8, 1.2) # Balanced
# ========== ENHANCED ENGINES ==========
class EnhancedUserVerificationEngine:
def __init__(self):
self.ai_service = GeminiAIService()
async def verify_user(self, name: str, email: str, user_id: str) -> UserVerification:
"""Enhanced user verification with AI analysis"""
# Basic validation
email_valid = "@" in email and "." in email.split("@")[-1]
name_valid = len(name.strip()) >= 2 and not any(char.isdigit() for char in name)
risk_factors = []
if not email_valid:
risk_factors.append("invalid_email")
if not name_valid:
risk_factors.append("suspicious_name")
if email.endswith(('.temp', '.fake', '.test', '.10minutemail', '.guerrillamail')):
risk_factors.append("temporary_email")
if len(name.strip()) < 3:
risk_factors.append("short_name")
risk_score = min(0.9, len(risk_factors) * 0.25 + random.uniform(0.1, 0.2))
is_verified = risk_score < 0.5 and email_valid and name_valid
verification_level = "premium" if risk_score < 0.2 else "standard" if risk_score < 0.5 else "basic"
# AI behavioral analysis
user_data = {
"name": name,
"email": email,
"user_id": user_id,
"risk_factors": risk_factors
}
transaction_history = [
{
"event": "previous_purchase",
"quantity": random.randint(1, 3),
"timestamp": (datetime.now() - timedelta(days=random.randint(1, 30))).isoformat()
}
]
ai_analysis = await self.ai_service.analyze_user_behavior(user_data, transaction_history)
return UserVerification(
user_id=user_id,
name=name,
email=email,
is_verified=is_verified,
verification_level=verification_level,
risk_score=risk_score,
ai_behavioral_analysis=ai_analysis
)
class EnhancedScalpingDetectionEngine:
def __init__(self):
self.ai_service = GeminiAIService()
async def detect_scalping(self, user_id: str, ticket_quantity: int, event_name: str) -> ScalpingDetection:
"""Enhanced scalping detection with AI pattern analysis"""
# Generate consistent data based on user_id for demo
random.seed(hash(user_id) % 2147483647)
flags = []
purchase_velocity = random.randint(1, 8)
ip_duplicates = random.randint(1, 5)
resale_frequency = random.randint(0, 12)
if purchase_velocity > 3:
flags.append("rapid_purchases")
if ip_duplicates > 2:
flags.append("multiple_ips")
if ticket_quantity > 4:
flags.append("bulk_purchase")
if resale_frequency > 5:
flags.append("frequent_reseller")
if ticket_quantity > 6:
flags.append("excessive_quantity")
# Calculate scalping probability
scalping_score = (
(purchase_velocity / 10) * 0.25 +
(ip_duplicates / 5) * 0.25 +
(ticket_quantity / 10) * 0.25 +
(resale_frequency / 20) * 0.25
)
# Add randomness for bot detection
if purchase_velocity > 6 and ticket_quantity > 5:
scalping_score += 0.3
is_scalper = scalping_score > 0.6
confidence = min(0.95, scalping_score + random.uniform(0.05, 0.15))
# AI pattern analysis
transaction_data = {
"user_id": user_id,
"ticket_quantity": ticket_quantity,
"event_name": event_name,
"purchase_velocity": purchase_velocity,
"ip_duplicates": ip_duplicates
}
network_data = [
{"connected_user": f"user_{i}", "similarity_score": random.uniform(0.1, 0.9)}
for i in range(min(3, ip_duplicates))
]
ai_pattern_analysis = await self.ai_service.analyze_scalping_patterns(user_id, transaction_data, network_data)
# Reset random seed
random.seed()
return ScalpingDetection(
is_scalper=is_scalper,
confidence=confidence,
flags=flags,
purchase_velocity=purchase_velocity,
ip_duplicates=ip_duplicates,
ai_pattern_analysis=ai_pattern_analysis,
network_connections=[f"suspicious_account_{i}" for i in range(max(0, ip_duplicates - 1))]
)
class EnhancedDynamicPricingEngine:
def __init__(self):
self.ai_service = GeminiAIService()
self.market_service = SerperAPIService()
async def calculate_pricing(self, original_price: float, demand_level: str, proposed_price: float, event_name: str, ticket_type: str) -> PricingRecommendation:
"""Enhanced pricing calculation with real-time market intelligence"""
# Get market intelligence
market_intel = await self.market_service.get_market_intelligence(event_name, ticket_type)
# Base pricing logic
demand_multipliers = {
"low": (0.7, 1.1),
"medium": (0.85, 1.3),
"high": (1.0, 1.6)
}
min_mult, max_mult = demand_multipliers.get(demand_level, (0.85, 1.3))
# Adjust based on market intelligence
if market_intel.market_sentiment == "positive":
max_mult *= 1.15
elif market_intel.market_sentiment == "negative":
max_mult *= 0.85
if market_intel.price_trend == "rising":
max_mult *= 1.1
elif market_intel.price_trend == "falling":
max_mult *= 0.9
# Calculate price bounds
min_price = original_price * min_mult
max_price = original_price * max_mult
# Calculate fair market price
if market_intel.average_resale_price > 0:
market_fair_price = market_intel.average_resale_price
else:
market_fair_price = original_price * (1.0 + (0.5 if demand_level == "high" else 0.2 if demand_level == "medium" else 0.0))
# Recommend price within acceptable range
recommended_price = max(min_price, min(proposed_price, max_price))
# Calculate margins
price_ratio = recommended_price / original_price
profit_margin = None
loss_percentage = None
if price_ratio > 1.0:
profit_margin = (price_ratio - 1) * 100
elif price_ratio < 1.0:
loss_percentage = (1 - price_ratio) * 100
# Generate pricing reason
reason = f"Adjusted for {demand_level} demand ({market_intel.market_sentiment} market sentiment, {market_intel.price_trend} trend)"
if recommended_price != proposed_price:
if recommended_price > proposed_price:
reason += f" - Price increased from ${proposed_price:.2f} to meet market conditions"
else:
reason += f" - Price reduced from ${proposed_price:.2f} for policy compliance"
# Generate AI pricing rationale
pricing_factors = {
"original_price": original_price,
"proposed_price": proposed_price,
"recommended_price": recommended_price,
"market_sentiment": market_intel.market_sentiment,
"price_trend": market_intel.price_trend,
"demand_level": demand_level
}
ai_rationale = await self.ai_service.generate_pricing_rationale(market_intel.dict(), pricing_factors)
return PricingRecommendation(
original_price=original_price,
recommended_resale_price=recommended_price,
market_fair_price=market_fair_price,
demand_level=demand_level,
price_adjustment_reason=reason,
profit_margin=profit_margin,
loss_percentage=loss_percentage,
market_intelligence=market_intel,
ai_pricing_rationale=ai_rationale
)
class EnhancedComplianceEngine:
def __init__(self):
self.ai_service = GeminiAIService()
async def check_compliance(
self,
user_id: str,
proposed_price: float,
original_price: float,
scalping_detection: ScalpingDetection,
event_name: str
) -> ResaleCompliance:
"""Enhanced compliance checking with AI policy analysis"""
violations = []
price_ratio = proposed_price / original_price
# Policy checks
if price_ratio > 2.5:
violations.append("price_exceeds_250_percent")
elif price_ratio > 2.0:
violations.append("price_exceeds_200_percent")
if scalping_detection.is_scalper:
violations.append("suspected_scalper")
if scalping_detection.purchase_velocity > 6:
violations.append("excessive_purchase_velocity")
elif scalping_detection.purchase_velocity > 4:
violations.append("high_purchase_velocity")
if scalping_detection.ip_duplicates > 3:
violations.append("multiple_ip_accounts")
# Generate consistent resale frequency based on user_id
random.seed(hash(user_id + "resale") % 2147483647)
resale_frequency = random.randint(0, 10)
random.seed()
if resale_frequency > 6:
violations.append("monthly_resale_limit_exceeded")
elif resale_frequency > 4:
violations.append("high_resale_frequency")
if "bulk_purchase" in scalping_detection.flags:
violations.append("bulk_purchase_violation")
# Determine compliance
is_compliant = len(violations) == 0
resale_allowed = is_compliant and not scalping_detection.is_scalper and price_ratio <= 2.0
max_allowed_price = original_price * 2.0
# Generate recommendation
if resale_allowed:
recommendation = "β
Transaction approved - complies with all anti-scalping policies"
else:
severity = "CRITICAL" if len(violations) > 3 else "HIGH" if len(violations) > 1 else "MODERATE"
recommendation = f"β Transaction blocked ({severity} risk) - Violations: {', '.join(violations)}"
# AI policy analysis
transaction_data = {
"user_id": user_id,
"proposed_price": proposed_price,
"original_price": original_price,
"price_ratio": price_ratio,
"event_name": event_name,
"scalping_indicators": scalping_detection.flags,
"resale_frequency": resale_frequency
}
ai_policy_analysis = await self.ai_service.analyze_policy_compliance(transaction_data, violations)
return ResaleCompliance(
is_compliant=is_compliant,
violations=violations,
resale_allowed=resale_allowed,
max_allowed_price=max_allowed_price,
recommendation=recommendation,
ai_policy_analysis=ai_policy_analysis
)
# ========== MOCK DATABASE (Enhanced) ==========
class MockDatabase:
"""Enhanced mock database with consistent data generation"""
def __init__(self):
self.user_purchase_history = {}
self.ip_addresses = {}
self.resale_history = {}
self.user_profiles = {}
def get_user_purchases(self, user_id: str) -> int:
if user_id not in self.user_purchase_history:
# Generate consistent data based on user_id hash
random.seed(hash(user_id) % 2147483647)
self.user_purchase_history[user_id] = random.randint(0, 8)
random.seed()
return self.user_purchase_history[user_id]
def get_ip_accounts(self, user_id: str) -> int:
random.seed(hash(user_id + "ip") % 2147483647)
result = random.randint(1, 5)
random.seed()
return result
def get_resale_frequency(self, user_id: str) -> int:
if user_id not in self.resale_history:
random.seed(hash(user_id + "resale") % 2147483647)
self.resale_history[user_id] = random.randint(0, 12)
random.seed()
return self.resale_history[user_id]
mock_db = MockDatabase()
# ========== ENHANCED MAIN APPLICATION ==========
class IntelligentAntiScalpingSystem:
def __init__(self):
self.verification_engine = EnhancedUserVerificationEngine()
self.scalping_engine = EnhancedScalpingDetectionEngine()
self.pricing_engine = EnhancedDynamicPricingEngine()
self.compliance_engine = EnhancedComplianceEngine()
self.ai_service = GeminiAIService()
logger.info("Intelligent Anti-Scalping System initialized")
async def process_intelligent_transaction(
self,
name: str,
email: str,
user_id: str,
event_name: str,
ticket_type: str,
ticket_quantity: int,
original_price: float,
demand_level: str,
proposed_resale_price: float
) -> Dict[str, Any]:
"""Process transaction through enhanced AI-powered analysis"""
try:
# Run analyses concurrently for better performance
verification_task = self.verification_engine.verify_user(name, email, user_id)
scalping_task = self.scalping_engine.detect_scalping(user_id, ticket_quantity, event_name)
pricing_task = self.pricing_engine.calculate_pricing(
original_price, demand_level, proposed_resale_price, event_name, ticket_type
)
# Wait for core analyses to complete
verification, scalping_detection, pricing = await asyncio.gather(
verification_task, scalping_task, pricing_task
)
# Compliance check depends on scalping detection
compliance = await self.compliance_engine.check_compliance(
user_id, proposed_resale_price, original_price, scalping_detection, event_name
)
# Final decision logic with weighted scoring
verification_score = 1.0 if verification.is_verified else 0.0
scalping_score = 0.0 if scalping_detection.is_scalper else 1.0
compliance_score = 1.0 if compliance.resale_allowed else 0.0
# Weighted decision (verification: 30%, scalping: 40%, compliance: 30%)
overall_score = (verification_score * 0.3 + scalping_score * 0.4 + compliance_score * 0.3)
final_decision = "APPROVED" if overall_score >= 0.7 else "DENIED"
# Generate intelligent action items
action_items = self._generate_action_items(
final_decision, verification, scalping_detection, compliance, pricing
)
# Create comprehensive report
report_data = {
"verification": verification.dict(),
"scalping_detection": scalping_detection.dict(),
"pricing": pricing.dict(),
"compliance": compliance.dict(),
"final_decision": final_decision,
"overall_score": overall_score
}
# Generate AI executive summary
ai_summary, confidence_score = await self.ai_service.generate_executive_summary(report_data)
# Create final report
report = IntelligentReport(
verification=verification,
scalping_detection=scalping_detection,
pricing=pricing,
compliance=compliance,
final_decision=final_decision,
action_items=action_items,
ai_summary=ai_summary,
confidence_score=confidence_score
)
return report.dict()
except Exception as e:
logger.error(f"Error processing intelligent transaction: {e}")
return self._create_error_response(str(e))
def _generate_action_items(
self,
decision: str,
verification: UserVerification,
scalping: ScalpingDetection,
compliance: ResaleCompliance,
pricing: PricingRecommendation
) -> List[str]:
"""Generate intelligent action items based on analysis results"""
actions = []
if decision == "APPROVED":
actions.extend([
"β
Process ticket resale at recommended price",
f"π° Set final price to ${pricing.recommended_resale_price:.2f}",
"π Monitor user activity for ongoing compliance"
])
if verification.risk_score > 0.3:
actions.append("β οΈ Enhanced monitoring due to elevated risk score")
if scalping.confidence > 0.5:
actions.append("π Close monitoring recommended due to scalping indicators")
else: # DENIED
actions.append("β Block transaction immediately")
if scalping.is_scalper:
actions.extend([
"π¨ Flag user account for comprehensive review",
"π§ Send scalping policy violation notice",
"π Consider temporary account restriction"
])
if not verification.is_verified:
actions.extend([
"π Require enhanced identity verification",
"π Manual verification call recommended"
])
if compliance.violations:
actions.append(f"π Send policy violation notice: {', '.join(compliance.violations)}")
if pricing.recommended_resale_price != pricing.original_price:
actions.append(f"π‘ Suggest alternative price: ${pricing.recommended_resale_price:.2f}")
# Add market-specific actions
if pricing.market_intelligence.market_sentiment == "negative":
actions.append("π Market conditions unfavorable - consider delaying resale")
elif pricing.market_intelligence.price_trend == "falling":
actions.append("β° Price trend declining - urgent sale recommended")
return actions
def _create_error_response(self, error_msg: str) -> Dict[str, Any]:
"""Create error response with fallback data"""
return {
"error": True,
"message": f"System error: {error_msg}",
"final_decision": "ERROR",
"action_items": ["π§ Contact system administrator", "π Manual review required"],
"ai_summary": "System error occurred during analysis",
"confidence_score": 0.0
}
# ========== GRADIO INTERFACE ==========
def create_interface():
system = IntelligentAntiScalpingSystem()
def process_transaction(
name, email, user_id, event_name, ticket_type,
ticket_quantity, original_price, demand_level, proposed_resale_price
):
"""Process the transaction and return formatted results"""
# Validate inputs
if not all([name, email, user_id, event_name]):
return "β **Error**: Please fill in all required fields"
try:
original_price = float(original_price) if original_price else 0
proposed_resale_price = float(proposed_resale_price) if proposed_resale_price else 0
ticket_quantity = int(ticket_quantity) if ticket_quantity else 1
if original_price <= 0 or proposed_resale_price <= 0:
return "β **Error**: Prices must be greater than 0"
except (ValueError, TypeError):
return "β **Error**: Please enter valid numbers for prices and quantity"
# Process through the intelligent system (run async in sync context)
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
try:
result = loop.run_until_complete(
system.process_intelligent_transaction(
name=name,
email=email,
user_id=user_id,
event_name=event_name,
ticket_type=ticket_type,
ticket_quantity=ticket_quantity,
original_price=original_price,
demand_level=demand_level,
proposed_resale_price=proposed_resale_price
)
)
finally:
loop.close()
# Handle errors
if result.get("error"):
return f"β **System Error**: {result.get('message', 'Unknown error occurred')}"
# Format the comprehensive output
decision_emoji = "β
" if result['final_decision'] == "APPROVED" else "β"
confidence_color = "π’" if result.get('confidence_score', 0) > 0.8 else "π‘" if result.get('confidence_score', 0) > 0.6 else "π΄"
output = f"""
# π€ Intelligent Anti-Scalping Analysis Report
## {decision_emoji} Final Decision: **{result['final_decision']}**
**AI Confidence**: {result.get('confidence_score', 0):.1%} {confidence_color}
> π§ **AI Summary**: {result.get('ai_summary', 'Analysis completed successfully')}
---
## π€ Enhanced User Verification
- **User ID**: `{result['verification']['user_id']}`
- **Name**: {result['verification']['name']}
- **Email**: {result['verification']['email']}
- **Verified**: {'β
Yes' if result['verification']['is_verified'] else 'β No'}
- **Risk Score**: {result['verification']['risk_score']:.1%} {'π’' if result['verification']['risk_score'] < 0.3 else 'π‘' if result['verification']['risk_score'] < 0.6 else 'π΄'}
- **Verification Level**: {result['verification']['verification_level'].title()}
### π§ AI Behavioral Analysis:
{result['verification']['ai_behavioral_analysis']}
---
## π Advanced Scalping Detection
- **Scalper Detected**: {'π¨ YES' if result['scalping_detection']['is_scalper'] else 'β
NO'}
- **Detection Confidence**: {result['scalping_detection']['confidence']:.1%}
- **Purchase Velocity**: {result['scalping_detection']['purchase_velocity']} purchases/hour
- **IP Address Duplicates**: {result['scalping_detection']['ip_duplicates']} accounts
- **Network Connections**: {len(result['scalping_detection']['network_connections'])} suspicious links
- **Red Flags**: {', '.join(result['scalping_detection']['flags']) if result['scalping_detection']['flags'] else 'β
None detected'}
### π§ AI Pattern Analysis:
{result['scalping_detection']['ai_pattern_analysis']}
---
## π° Intelligent Market Pricing
- **Original Price**: ${result['pricing']['original_price']:.2f}
- **Proposed Resale**: ${proposed_resale_price:.2f}
- **AI Recommended**: ${result['pricing']['recommended_resale_price']:.2f}
- **Market Fair Price**: ${result['pricing']['market_fair_price']:.2f}
- **Price Ratio**: {result['pricing']['recommended_resale_price']/result['pricing']['original_price']:.2f}x
### π Market Intelligence:
- **Market Sentiment**: {result['pricing']['market_intelligence']['market_sentiment'].title()}
- **Price Trend**: {result['pricing']['market_intelligence']['price_trend'].title()} π
- **Supply/Demand**: {result['pricing']['market_intelligence']['supply_demand_ratio']:.2f}
- **Average Market Price**: ${result['pricing']['market_intelligence']['average_resale_price']:.2f}
"""
if result['pricing'].get('profit_margin'):
output += f"- **Profit Margin**: {result['pricing']['profit_margin']:.1f}% π\n"
elif result['pricing'].get('loss_percentage'):
output += f"- **Loss**: -{result['pricing']['loss_percentage']:.1f}% π\n"
output += f"""
### π§ AI Pricing Rationale:
{result['pricing']['ai_pricing_rationale']}
---
## β
Compliance & Policy Analysis
- **Policy Compliant**: {'β
Yes' if result['compliance']['is_compliant'] else 'β No'}
- **Resale Permitted**: {'β
Yes' if result['compliance']['resale_allowed'] else 'β No'}
- **Maximum Allowed**: ${result['compliance']['max_allowed_price']:.2f}
- **Violations**: {', '.join(result['compliance']['violations']) if result['compliance']['violations'] else 'β
None'}
### π§ AI Policy Analysis:
{result['compliance']['ai_policy_analysis']}
---
## π Intelligent Action Items
"""
for i, action in enumerate(result['action_items'], 1):
output += f"{i}. {action}\n"
# Add summary box
if result['final_decision'] == "APPROVED":
output += f"""
---
> β
**TRANSACTION APPROVED**
>
> **Confidence Level**: {result.get('confidence_score', 0):.1%}
>
> All AI-powered checks passed. Resale can proceed with recommended monitoring.
"""
else:
output += f"""
---
> β **TRANSACTION BLOCKED**
>
> **Risk Assessment**: High risk detected by AI analysis
>
> Policy violations and suspicious patterns identified. Manual review required.
"""
output += f"""
---
*π€ Analysis powered by Google Gemini AI β’ Generated at {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}*
"""
return output
# Create enhanced Gradio interface
with gr.Blocks(
title="π€ Intelligent Anti-Scalping System",
theme=gr.themes.Soft(
primary_hue="blue",
secondary_hue="purple",
),
css="""
.gradio-container {
max-width: 1200px !important;
}
"""
) as interface:
gr.Markdown("""
# π€ Intelligent AI-Powered Anti-Scalping System
Next-generation ticket scalping prevention using **Google Gemini AI**, real-time market intelligence,
and advanced behavioral analysis. Protects consumers while ensuring fair market pricing.
## π AI-Powered Features:
**π§ Behavioral Analysis**: Gemini AI analyzes user patterns for authenticity
**π Pattern Recognition**: Advanced scalping detection using network analysis
**π Market Intelligence**: Real-time pricing data and sentiment analysis
**βοΈ Policy Compliance**: AI-powered policy interpretation and enforcement
**π Dynamic Pricing**: Market-aware fair pricing recommendations
---
""")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### π€ User Information")
name = gr.Textbox(label="Full Name", placeholder="John Doe", value="")
email = gr.Textbox(label="Email Address", placeholder="john@example.com", value="")
user_id = gr.Textbox(label="User ID", placeholder="USER123", value="")
gr.Markdown("### ποΈ Event Details")
event_name = gr.Textbox(label="Event Name", placeholder="Taylor Swift - Eras Tour", value="")
ticket_type = gr.Dropdown(
label="Ticket Type",
choices=["General Admission", "VIP", "Premium", "Standard", "Balcony", "Floor", "Front Row"],
value="Standard"
)
ticket_quantity = gr.Number(label="Number of Tickets", value=1, minimum=1, maximum=10, precision=0)
gr.Markdown("### π² Pricing Information")
original_price = gr.Number(label="Original Ticket Price ($)", value=100, minimum=1)
demand_level = gr.Radio(
label="Current Market Demand",
choices=["low", "medium", "high"],
value="medium"
)
proposed_resale_price = gr.Number(label="Proposed Resale Price ($)", value=150, minimum=1)
submit_btn = gr.Button("π€ Run AI Analysis", variant="primary", size="lg")
with gr.Column(scale=2):
output = gr.Markdown(value="""
π€ **Ready for AI Analysis!**
Fill in the transaction details and click 'Run AI Analysis' to get comprehensive:
- π§ AI behavioral analysis
- π Advanced scalping detection
- π Real-time market intelligence
- βοΈ Policy compliance assessment
- π Dynamic pricing recommendations
""")
# Event handlers
submit_btn.click(
fn=process_transaction,
inputs=[
name, email, user_id, event_name, ticket_type,
ticket_quantity, original_price, demand_level, proposed_resale_price
],
outputs=output
)
# Examples section
gr.Markdown("---")
gr.Markdown("### π Example Scenarios")
examples = gr.Examples(
examples=[
["John Smith", "john@gmail.com", "USER001", "Taylor Swift - Eras Tour", "VIP", 2, 500, "high", 750],
["Jane Doe", "jane@company.com", "USER002", "NBA Finals Game 7", "Premium", 4, 300, "high", 1200],
["Bob Wilson", "bob@email.com", "USER003", "Local Concert", "General Admission", 1, 50, "low", 40],
["ScalperBot", "temp@fake.com", "BOT999", "Popular Event", "Standard", 8, 100, "high", 300],
["Sarah Johnson", "sarah.j@university.edu", "USER456", "Music Festival", "Premium", 3, 200, "medium", 280],
],
inputs=[
name, email, user_id, event_name, ticket_type,
ticket_quantity, original_price, demand_level, proposed_resale_price
]
)
gr.Markdown("""
---
### π System Configuration
**AI Provider**: Google Gemini 1.5 Flash (Set `GEMINI_API_KEY` environment variable)
**Market Data**: Serper API (Optional: Set `SERPER_API_KEY` for real-time data)
**Fallback Mode**: System works without API keys using intelligent simulations
*π Your API keys are never stored or shared. All processing is secure and private.*
""")
return interface
# Main execution
if __name__ == "__main__":
interface = create_interface()
interface.launch(
share=True,
server_name="0.0.0.0",
server_port=7860,
show_error=True
) |