|
from argparse import ArgumentParser |
|
from functools import lru_cache |
|
from typing import List, Tuple |
|
|
|
import cv2 |
|
import numpy |
|
|
|
import facefusion.jobs.job_manager |
|
import facefusion.jobs.job_store |
|
import facefusion.processors.core as processors |
|
from facefusion import config, content_analyser, face_classifier, face_detector, face_landmarker, face_masker, face_recognizer, inference_manager, logger, process_manager, state_manager, wording |
|
from facefusion.common_helper import create_float_metavar |
|
from facefusion.download import conditional_download_hashes, conditional_download_sources, resolve_download_url |
|
from facefusion.face_analyser import get_many_faces, get_one_face |
|
from facefusion.face_helper import paste_back, scale_face_landmark_5, warp_face_by_face_landmark_5 |
|
from facefusion.face_masker import create_static_box_mask |
|
from facefusion.face_selector import find_similar_faces, sort_and_filter_faces |
|
from facefusion.face_store import get_reference_faces |
|
from facefusion.filesystem import in_directory, is_image, is_video, resolve_relative_path, same_file_extension |
|
from facefusion.processors import choices as processors_choices |
|
from facefusion.processors.live_portrait import create_rotation, limit_euler_angles, limit_expression |
|
from facefusion.processors.types import FaceEditorInputs, LivePortraitExpression, LivePortraitFeatureVolume, LivePortraitMotionPoints, LivePortraitPitch, LivePortraitRoll, LivePortraitRotation, LivePortraitScale, LivePortraitTranslation, LivePortraitYaw |
|
from facefusion.program_helper import find_argument_group |
|
from facefusion.thread_helper import conditional_thread_semaphore, thread_semaphore |
|
from facefusion.types import ApplyStateItem, Args, DownloadScope, Face, FaceLandmark68, InferencePool, ModelOptions, ModelSet, ProcessMode, QueuePayload, UpdateProgress, VisionFrame |
|
from facefusion.vision import read_image, read_static_image, write_image |
|
|
|
|
|
@lru_cache(maxsize = None) |
|
def create_static_model_set(download_scope : DownloadScope) -> ModelSet: |
|
return\ |
|
{ |
|
'live_portrait': |
|
{ |
|
'hashes': |
|
{ |
|
'feature_extractor': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'live_portrait_feature_extractor.hash'), |
|
'path': resolve_relative_path('../.assets/models/live_portrait_feature_extractor.hash') |
|
}, |
|
'motion_extractor': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'live_portrait_motion_extractor.hash'), |
|
'path': resolve_relative_path('../.assets/models/live_portrait_motion_extractor.hash') |
|
}, |
|
'eye_retargeter': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'live_portrait_eye_retargeter.hash'), |
|
'path': resolve_relative_path('../.assets/models/live_portrait_eye_retargeter.hash') |
|
}, |
|
'lip_retargeter': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'live_portrait_lip_retargeter.hash'), |
|
'path': resolve_relative_path('../.assets/models/live_portrait_lip_retargeter.hash') |
|
}, |
|
'stitcher': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'live_portrait_stitcher.hash'), |
|
'path': resolve_relative_path('../.assets/models/live_portrait_stitcher.hash') |
|
}, |
|
'generator': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'live_portrait_generator.hash'), |
|
'path': resolve_relative_path('../.assets/models/live_portrait_generator.hash') |
|
} |
|
}, |
|
'sources': |
|
{ |
|
'feature_extractor': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'live_portrait_feature_extractor.onnx'), |
|
'path': resolve_relative_path('../.assets/models/live_portrait_feature_extractor.onnx') |
|
}, |
|
'motion_extractor': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'live_portrait_motion_extractor.onnx'), |
|
'path': resolve_relative_path('../.assets/models/live_portrait_motion_extractor.onnx') |
|
}, |
|
'eye_retargeter': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'live_portrait_eye_retargeter.onnx'), |
|
'path': resolve_relative_path('../.assets/models/live_portrait_eye_retargeter.onnx') |
|
}, |
|
'lip_retargeter': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'live_portrait_lip_retargeter.onnx'), |
|
'path': resolve_relative_path('../.assets/models/live_portrait_lip_retargeter.onnx') |
|
}, |
|
'stitcher': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'live_portrait_stitcher.onnx'), |
|
'path': resolve_relative_path('../.assets/models/live_portrait_stitcher.onnx') |
|
}, |
|
'generator': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'live_portrait_generator.onnx'), |
|
'path': resolve_relative_path('../.assets/models/live_portrait_generator.onnx') |
|
} |
|
}, |
|
'template': 'ffhq_512', |
|
'size': (512, 512) |
|
} |
|
} |
|
|
|
|
|
def get_inference_pool() -> InferencePool: |
|
model_names = [ state_manager.get_item('face_editor_model') ] |
|
model_source_set = get_model_options().get('sources') |
|
|
|
return inference_manager.get_inference_pool(__name__, model_names, model_source_set) |
|
|
|
|
|
def clear_inference_pool() -> None: |
|
model_names = [ state_manager.get_item('face_editor_model') ] |
|
inference_manager.clear_inference_pool(__name__, model_names) |
|
|
|
|
|
def get_model_options() -> ModelOptions: |
|
face_editor_model = state_manager.get_item('face_editor_model') |
|
return create_static_model_set('full').get(face_editor_model) |
|
|
|
|
|
def register_args(program : ArgumentParser) -> None: |
|
group_processors = find_argument_group(program, 'processors') |
|
if group_processors: |
|
group_processors.add_argument('--face-editor-model', help = wording.get('help.face_editor_model'), default = config.get_str_value('processors', 'face_editor_model', 'live_portrait'), choices = processors_choices.face_editor_models) |
|
group_processors.add_argument('--face-editor-eyebrow-direction', help = wording.get('help.face_editor_eyebrow_direction'), type = float, default = config.get_float_value('processors', 'face_editor_eyebrow_direction', '0'), choices = processors_choices.face_editor_eyebrow_direction_range, metavar = create_float_metavar(processors_choices.face_editor_eyebrow_direction_range)) |
|
group_processors.add_argument('--face-editor-eye-gaze-horizontal', help = wording.get('help.face_editor_eye_gaze_horizontal'), type = float, default = config.get_float_value('processors', 'face_editor_eye_gaze_horizontal', '0'), choices = processors_choices.face_editor_eye_gaze_horizontal_range, metavar = create_float_metavar(processors_choices.face_editor_eye_gaze_horizontal_range)) |
|
group_processors.add_argument('--face-editor-eye-gaze-vertical', help = wording.get('help.face_editor_eye_gaze_vertical'), type = float, default = config.get_float_value('processors', 'face_editor_eye_gaze_vertical', '0'), choices = processors_choices.face_editor_eye_gaze_vertical_range, metavar = create_float_metavar(processors_choices.face_editor_eye_gaze_vertical_range)) |
|
group_processors.add_argument('--face-editor-eye-open-ratio', help = wording.get('help.face_editor_eye_open_ratio'), type = float, default = config.get_float_value('processors', 'face_editor_eye_open_ratio', '0'), choices = processors_choices.face_editor_eye_open_ratio_range, metavar = create_float_metavar(processors_choices.face_editor_eye_open_ratio_range)) |
|
group_processors.add_argument('--face-editor-lip-open-ratio', help = wording.get('help.face_editor_lip_open_ratio'), type = float, default = config.get_float_value('processors', 'face_editor_lip_open_ratio', '0'), choices = processors_choices.face_editor_lip_open_ratio_range, metavar = create_float_metavar(processors_choices.face_editor_lip_open_ratio_range)) |
|
group_processors.add_argument('--face-editor-mouth-grim', help = wording.get('help.face_editor_mouth_grim'), type = float, default = config.get_float_value('processors', 'face_editor_mouth_grim', '0'), choices = processors_choices.face_editor_mouth_grim_range, metavar = create_float_metavar(processors_choices.face_editor_mouth_grim_range)) |
|
group_processors.add_argument('--face-editor-mouth-pout', help = wording.get('help.face_editor_mouth_pout'), type = float, default = config.get_float_value('processors', 'face_editor_mouth_pout', '0'), choices = processors_choices.face_editor_mouth_pout_range, metavar = create_float_metavar(processors_choices.face_editor_mouth_pout_range)) |
|
group_processors.add_argument('--face-editor-mouth-purse', help = wording.get('help.face_editor_mouth_purse'), type = float, default = config.get_float_value('processors', 'face_editor_mouth_purse', '0'), choices = processors_choices.face_editor_mouth_purse_range, metavar = create_float_metavar(processors_choices.face_editor_mouth_purse_range)) |
|
group_processors.add_argument('--face-editor-mouth-smile', help = wording.get('help.face_editor_mouth_smile'), type = float, default = config.get_float_value('processors', 'face_editor_mouth_smile', '0'), choices = processors_choices.face_editor_mouth_smile_range, metavar = create_float_metavar(processors_choices.face_editor_mouth_smile_range)) |
|
group_processors.add_argument('--face-editor-mouth-position-horizontal', help = wording.get('help.face_editor_mouth_position_horizontal'), type = float, default = config.get_float_value('processors', 'face_editor_mouth_position_horizontal', '0'), choices = processors_choices.face_editor_mouth_position_horizontal_range, metavar = create_float_metavar(processors_choices.face_editor_mouth_position_horizontal_range)) |
|
group_processors.add_argument('--face-editor-mouth-position-vertical', help = wording.get('help.face_editor_mouth_position_vertical'), type = float, default = config.get_float_value('processors', 'face_editor_mouth_position_vertical', '0'), choices = processors_choices.face_editor_mouth_position_vertical_range, metavar = create_float_metavar(processors_choices.face_editor_mouth_position_vertical_range)) |
|
group_processors.add_argument('--face-editor-head-pitch', help = wording.get('help.face_editor_head_pitch'), type = float, default = config.get_float_value('processors', 'face_editor_head_pitch', '0'), choices = processors_choices.face_editor_head_pitch_range, metavar = create_float_metavar(processors_choices.face_editor_head_pitch_range)) |
|
group_processors.add_argument('--face-editor-head-yaw', help = wording.get('help.face_editor_head_yaw'), type = float, default = config.get_float_value('processors', 'face_editor_head_yaw', '0'), choices = processors_choices.face_editor_head_yaw_range, metavar = create_float_metavar(processors_choices.face_editor_head_yaw_range)) |
|
group_processors.add_argument('--face-editor-head-roll', help = wording.get('help.face_editor_head_roll'), type = float, default = config.get_float_value('processors', 'face_editor_head_roll', '0'), choices = processors_choices.face_editor_head_roll_range, metavar = create_float_metavar(processors_choices.face_editor_head_roll_range)) |
|
facefusion.jobs.job_store.register_step_keys([ 'face_editor_model', 'face_editor_eyebrow_direction', 'face_editor_eye_gaze_horizontal', 'face_editor_eye_gaze_vertical', 'face_editor_eye_open_ratio', 'face_editor_lip_open_ratio', 'face_editor_mouth_grim', 'face_editor_mouth_pout', 'face_editor_mouth_purse', 'face_editor_mouth_smile', 'face_editor_mouth_position_horizontal', 'face_editor_mouth_position_vertical', 'face_editor_head_pitch', 'face_editor_head_yaw', 'face_editor_head_roll' ]) |
|
|
|
|
|
def apply_args(args : Args, apply_state_item : ApplyStateItem) -> None: |
|
apply_state_item('face_editor_model', args.get('face_editor_model')) |
|
apply_state_item('face_editor_eyebrow_direction', args.get('face_editor_eyebrow_direction')) |
|
apply_state_item('face_editor_eye_gaze_horizontal', args.get('face_editor_eye_gaze_horizontal')) |
|
apply_state_item('face_editor_eye_gaze_vertical', args.get('face_editor_eye_gaze_vertical')) |
|
apply_state_item('face_editor_eye_open_ratio', args.get('face_editor_eye_open_ratio')) |
|
apply_state_item('face_editor_lip_open_ratio', args.get('face_editor_lip_open_ratio')) |
|
apply_state_item('face_editor_mouth_grim', args.get('face_editor_mouth_grim')) |
|
apply_state_item('face_editor_mouth_pout', args.get('face_editor_mouth_pout')) |
|
apply_state_item('face_editor_mouth_purse', args.get('face_editor_mouth_purse')) |
|
apply_state_item('face_editor_mouth_smile', args.get('face_editor_mouth_smile')) |
|
apply_state_item('face_editor_mouth_position_horizontal', args.get('face_editor_mouth_position_horizontal')) |
|
apply_state_item('face_editor_mouth_position_vertical', args.get('face_editor_mouth_position_vertical')) |
|
apply_state_item('face_editor_head_pitch', args.get('face_editor_head_pitch')) |
|
apply_state_item('face_editor_head_yaw', args.get('face_editor_head_yaw')) |
|
apply_state_item('face_editor_head_roll', args.get('face_editor_head_roll')) |
|
|
|
|
|
def pre_check() -> bool: |
|
model_hash_set = get_model_options().get('hashes') |
|
model_source_set = get_model_options().get('sources') |
|
|
|
return conditional_download_hashes(model_hash_set) and conditional_download_sources(model_source_set) |
|
|
|
|
|
def pre_process(mode : ProcessMode) -> bool: |
|
if mode in [ 'output', 'preview' ] and not is_image(state_manager.get_item('target_path')) and not is_video(state_manager.get_item('target_path')): |
|
logger.error(wording.get('choose_image_or_video_target') + wording.get('exclamation_mark'), __name__) |
|
return False |
|
if mode == 'output' and not in_directory(state_manager.get_item('output_path')): |
|
logger.error(wording.get('specify_image_or_video_output') + wording.get('exclamation_mark'), __name__) |
|
return False |
|
if mode == 'output' and not same_file_extension(state_manager.get_item('target_path'), state_manager.get_item('output_path')): |
|
logger.error(wording.get('match_target_and_output_extension') + wording.get('exclamation_mark'), __name__) |
|
return False |
|
return True |
|
|
|
|
|
def post_process() -> None: |
|
read_static_image.cache_clear() |
|
if state_manager.get_item('video_memory_strategy') in [ 'strict', 'moderate' ]: |
|
clear_inference_pool() |
|
if state_manager.get_item('video_memory_strategy') == 'strict': |
|
content_analyser.clear_inference_pool() |
|
face_classifier.clear_inference_pool() |
|
face_detector.clear_inference_pool() |
|
face_landmarker.clear_inference_pool() |
|
face_masker.clear_inference_pool() |
|
face_recognizer.clear_inference_pool() |
|
|
|
|
|
def edit_face(target_face : Face, temp_vision_frame : VisionFrame) -> VisionFrame: |
|
model_template = get_model_options().get('template') |
|
model_size = get_model_options().get('size') |
|
face_landmark_5 = scale_face_landmark_5(target_face.landmark_set.get('5/68'), 1.5) |
|
crop_vision_frame, affine_matrix = warp_face_by_face_landmark_5(temp_vision_frame, face_landmark_5, model_template, model_size) |
|
box_mask = create_static_box_mask(crop_vision_frame.shape[:2][::-1], state_manager.get_item('face_mask_blur'), (0, 0, 0, 0)) |
|
crop_vision_frame = prepare_crop_frame(crop_vision_frame) |
|
crop_vision_frame = apply_edit(crop_vision_frame, target_face.landmark_set.get('68')) |
|
crop_vision_frame = normalize_crop_frame(crop_vision_frame) |
|
temp_vision_frame = paste_back(temp_vision_frame, crop_vision_frame, box_mask, affine_matrix) |
|
return temp_vision_frame |
|
|
|
|
|
def apply_edit(crop_vision_frame : VisionFrame, face_landmark_68 : FaceLandmark68) -> VisionFrame: |
|
feature_volume = forward_extract_feature(crop_vision_frame) |
|
pitch, yaw, roll, scale, translation, expression, motion_points = forward_extract_motion(crop_vision_frame) |
|
rotation = create_rotation(pitch, yaw, roll) |
|
motion_points_target = scale * (motion_points @ rotation.T + expression) + translation |
|
expression = edit_eye_gaze(expression) |
|
expression = edit_mouth_grim(expression) |
|
expression = edit_mouth_position(expression) |
|
expression = edit_mouth_pout(expression) |
|
expression = edit_mouth_purse(expression) |
|
expression = edit_mouth_smile(expression) |
|
expression = edit_eyebrow_direction(expression) |
|
expression = limit_expression(expression) |
|
rotation = edit_head_rotation(pitch, yaw, roll) |
|
motion_points_source = motion_points @ rotation.T |
|
motion_points_source += expression |
|
motion_points_source *= scale |
|
motion_points_source += translation |
|
motion_points_source += edit_eye_open(motion_points_target, face_landmark_68) |
|
motion_points_source += edit_lip_open(motion_points_target, face_landmark_68) |
|
motion_points_source = forward_stitch_motion_points(motion_points_source, motion_points_target) |
|
crop_vision_frame = forward_generate_frame(feature_volume, motion_points_source, motion_points_target) |
|
return crop_vision_frame |
|
|
|
|
|
def forward_extract_feature(crop_vision_frame : VisionFrame) -> LivePortraitFeatureVolume: |
|
feature_extractor = get_inference_pool().get('feature_extractor') |
|
|
|
with conditional_thread_semaphore(): |
|
feature_volume = feature_extractor.run(None, |
|
{ |
|
'input': crop_vision_frame |
|
})[0] |
|
|
|
return feature_volume |
|
|
|
|
|
def forward_extract_motion(crop_vision_frame : VisionFrame) -> Tuple[LivePortraitPitch, LivePortraitYaw, LivePortraitRoll, LivePortraitScale, LivePortraitTranslation, LivePortraitExpression, LivePortraitMotionPoints]: |
|
motion_extractor = get_inference_pool().get('motion_extractor') |
|
|
|
with conditional_thread_semaphore(): |
|
pitch, yaw, roll, scale, translation, expression, motion_points = motion_extractor.run(None, |
|
{ |
|
'input': crop_vision_frame |
|
}) |
|
|
|
return pitch, yaw, roll, scale, translation, expression, motion_points |
|
|
|
|
|
def forward_retarget_eye(eye_motion_points : LivePortraitMotionPoints) -> LivePortraitMotionPoints: |
|
eye_retargeter = get_inference_pool().get('eye_retargeter') |
|
|
|
with conditional_thread_semaphore(): |
|
eye_motion_points = eye_retargeter.run(None, |
|
{ |
|
'input': eye_motion_points |
|
})[0] |
|
|
|
return eye_motion_points |
|
|
|
|
|
def forward_retarget_lip(lip_motion_points : LivePortraitMotionPoints) -> LivePortraitMotionPoints: |
|
lip_retargeter = get_inference_pool().get('lip_retargeter') |
|
|
|
with conditional_thread_semaphore(): |
|
lip_motion_points = lip_retargeter.run(None, |
|
{ |
|
'input': lip_motion_points |
|
})[0] |
|
|
|
return lip_motion_points |
|
|
|
|
|
def forward_stitch_motion_points(source_motion_points : LivePortraitMotionPoints, target_motion_points : LivePortraitMotionPoints) -> LivePortraitMotionPoints: |
|
stitcher = get_inference_pool().get('stitcher') |
|
|
|
with thread_semaphore(): |
|
motion_points = stitcher.run(None, |
|
{ |
|
'source': source_motion_points, |
|
'target': target_motion_points |
|
})[0] |
|
|
|
return motion_points |
|
|
|
|
|
def forward_generate_frame(feature_volume : LivePortraitFeatureVolume, source_motion_points : LivePortraitMotionPoints, target_motion_points : LivePortraitMotionPoints) -> VisionFrame: |
|
generator = get_inference_pool().get('generator') |
|
|
|
with thread_semaphore(): |
|
crop_vision_frame = generator.run(None, |
|
{ |
|
'feature_volume': feature_volume, |
|
'source': source_motion_points, |
|
'target': target_motion_points |
|
})[0][0] |
|
|
|
return crop_vision_frame |
|
|
|
|
|
def edit_eyebrow_direction(expression : LivePortraitExpression) -> LivePortraitExpression: |
|
face_editor_eyebrow = state_manager.get_item('face_editor_eyebrow_direction') |
|
|
|
if face_editor_eyebrow > 0: |
|
expression[0, 1, 1] += numpy.interp(face_editor_eyebrow, [ -1, 1 ], [ -0.015, 0.015 ]) |
|
expression[0, 2, 1] -= numpy.interp(face_editor_eyebrow, [ -1, 1 ], [ -0.020, 0.020 ]) |
|
else: |
|
expression[0, 1, 0] -= numpy.interp(face_editor_eyebrow, [ -1, 1 ], [ -0.015, 0.015 ]) |
|
expression[0, 2, 0] += numpy.interp(face_editor_eyebrow, [ -1, 1 ], [ -0.020, 0.020 ]) |
|
expression[0, 1, 1] += numpy.interp(face_editor_eyebrow, [ -1, 1 ], [ -0.005, 0.005 ]) |
|
expression[0, 2, 1] -= numpy.interp(face_editor_eyebrow, [ -1, 1 ], [ -0.005, 0.005 ]) |
|
return expression |
|
|
|
|
|
def edit_eye_gaze(expression : LivePortraitExpression) -> LivePortraitExpression: |
|
face_editor_eye_gaze_horizontal = state_manager.get_item('face_editor_eye_gaze_horizontal') |
|
face_editor_eye_gaze_vertical = state_manager.get_item('face_editor_eye_gaze_vertical') |
|
|
|
if face_editor_eye_gaze_horizontal > 0: |
|
expression[0, 11, 0] += numpy.interp(face_editor_eye_gaze_horizontal, [ -1, 1 ], [ -0.015, 0.015 ]) |
|
expression[0, 15, 0] += numpy.interp(face_editor_eye_gaze_horizontal, [ -1, 1 ], [ -0.020, 0.020 ]) |
|
else: |
|
expression[0, 11, 0] += numpy.interp(face_editor_eye_gaze_horizontal, [ -1, 1 ], [ -0.020, 0.020 ]) |
|
expression[0, 15, 0] += numpy.interp(face_editor_eye_gaze_horizontal, [ -1, 1 ], [ -0.015, 0.015 ]) |
|
expression[0, 1, 1] += numpy.interp(face_editor_eye_gaze_vertical, [ -1, 1 ], [ -0.0025, 0.0025 ]) |
|
expression[0, 2, 1] -= numpy.interp(face_editor_eye_gaze_vertical, [ -1, 1 ], [ -0.0025, 0.0025 ]) |
|
expression[0, 11, 1] -= numpy.interp(face_editor_eye_gaze_vertical, [ -1, 1 ], [ -0.010, 0.010 ]) |
|
expression[0, 13, 1] -= numpy.interp(face_editor_eye_gaze_vertical, [ -1, 1 ], [ -0.005, 0.005 ]) |
|
expression[0, 15, 1] -= numpy.interp(face_editor_eye_gaze_vertical, [ -1, 1 ], [ -0.010, 0.010 ]) |
|
expression[0, 16, 1] -= numpy.interp(face_editor_eye_gaze_vertical, [ -1, 1 ], [ -0.005, 0.005 ]) |
|
return expression |
|
|
|
|
|
def edit_eye_open(motion_points : LivePortraitMotionPoints, face_landmark_68 : FaceLandmark68) -> LivePortraitMotionPoints: |
|
face_editor_eye_open_ratio = state_manager.get_item('face_editor_eye_open_ratio') |
|
left_eye_ratio = calc_distance_ratio(face_landmark_68, 37, 40, 39, 36) |
|
right_eye_ratio = calc_distance_ratio(face_landmark_68, 43, 46, 45, 42) |
|
|
|
if face_editor_eye_open_ratio < 0: |
|
eye_motion_points = numpy.concatenate([ motion_points.ravel(), [ left_eye_ratio, right_eye_ratio, 0.0 ] ]) |
|
else: |
|
eye_motion_points = numpy.concatenate([ motion_points.ravel(), [ left_eye_ratio, right_eye_ratio, 0.6 ] ]) |
|
eye_motion_points = eye_motion_points.reshape(1, -1).astype(numpy.float32) |
|
eye_motion_points = forward_retarget_eye(eye_motion_points) * numpy.abs(face_editor_eye_open_ratio) |
|
eye_motion_points = eye_motion_points.reshape(-1, 21, 3) |
|
return eye_motion_points |
|
|
|
|
|
def edit_lip_open(motion_points : LivePortraitMotionPoints, face_landmark_68 : FaceLandmark68) -> LivePortraitMotionPoints: |
|
face_editor_lip_open_ratio = state_manager.get_item('face_editor_lip_open_ratio') |
|
lip_ratio = calc_distance_ratio(face_landmark_68, 62, 66, 54, 48) |
|
|
|
if face_editor_lip_open_ratio < 0: |
|
lip_motion_points = numpy.concatenate([ motion_points.ravel(), [ lip_ratio, 0.0 ] ]) |
|
else: |
|
lip_motion_points = numpy.concatenate([ motion_points.ravel(), [ lip_ratio, 1.0 ] ]) |
|
lip_motion_points = lip_motion_points.reshape(1, -1).astype(numpy.float32) |
|
lip_motion_points = forward_retarget_lip(lip_motion_points) * numpy.abs(face_editor_lip_open_ratio) |
|
lip_motion_points = lip_motion_points.reshape(-1, 21, 3) |
|
return lip_motion_points |
|
|
|
|
|
def edit_mouth_grim(expression : LivePortraitExpression) -> LivePortraitExpression: |
|
face_editor_mouth_grim = state_manager.get_item('face_editor_mouth_grim') |
|
if face_editor_mouth_grim > 0: |
|
expression[0, 17, 2] -= numpy.interp(face_editor_mouth_grim, [ -1, 1 ], [ -0.005, 0.005 ]) |
|
expression[0, 19, 2] += numpy.interp(face_editor_mouth_grim, [ -1, 1 ], [ -0.01, 0.01 ]) |
|
expression[0, 20, 1] -= numpy.interp(face_editor_mouth_grim, [ -1, 1 ], [ -0.06, 0.06 ]) |
|
expression[0, 20, 2] -= numpy.interp(face_editor_mouth_grim, [ -1, 1 ], [ -0.03, 0.03 ]) |
|
else: |
|
expression[0, 19, 1] -= numpy.interp(face_editor_mouth_grim, [ -1, 1 ], [ -0.05, 0.05 ]) |
|
expression[0, 19, 2] -= numpy.interp(face_editor_mouth_grim, [ -1, 1 ], [ -0.02, 0.02 ]) |
|
expression[0, 20, 2] -= numpy.interp(face_editor_mouth_grim, [ -1, 1 ], [ -0.03, 0.03 ]) |
|
return expression |
|
|
|
|
|
def edit_mouth_position(expression : LivePortraitExpression) -> LivePortraitExpression: |
|
face_editor_mouth_position_horizontal = state_manager.get_item('face_editor_mouth_position_horizontal') |
|
face_editor_mouth_position_vertical = state_manager.get_item('face_editor_mouth_position_vertical') |
|
expression[0, 19, 0] += numpy.interp(face_editor_mouth_position_horizontal, [ -1, 1 ], [ -0.05, 0.05 ]) |
|
expression[0, 20, 0] += numpy.interp(face_editor_mouth_position_horizontal, [ -1, 1 ], [ -0.04, 0.04 ]) |
|
if face_editor_mouth_position_vertical > 0: |
|
expression[0, 19, 1] -= numpy.interp(face_editor_mouth_position_vertical, [ -1, 1 ], [ -0.04, 0.04 ]) |
|
expression[0, 20, 1] -= numpy.interp(face_editor_mouth_position_vertical, [ -1, 1 ], [ -0.02, 0.02 ]) |
|
else: |
|
expression[0, 19, 1] -= numpy.interp(face_editor_mouth_position_vertical, [ -1, 1 ], [ -0.05, 0.05 ]) |
|
expression[0, 20, 1] -= numpy.interp(face_editor_mouth_position_vertical, [ -1, 1 ], [ -0.04, 0.04 ]) |
|
return expression |
|
|
|
|
|
def edit_mouth_pout(expression : LivePortraitExpression) -> LivePortraitExpression: |
|
face_editor_mouth_pout = state_manager.get_item('face_editor_mouth_pout') |
|
if face_editor_mouth_pout > 0: |
|
expression[0, 19, 1] -= numpy.interp(face_editor_mouth_pout, [ -1, 1 ], [ -0.022, 0.022 ]) |
|
expression[0, 19, 2] += numpy.interp(face_editor_mouth_pout, [ -1, 1 ], [ -0.025, 0.025 ]) |
|
expression[0, 20, 2] -= numpy.interp(face_editor_mouth_pout, [ -1, 1 ], [ -0.002, 0.002 ]) |
|
else: |
|
expression[0, 19, 1] += numpy.interp(face_editor_mouth_pout, [ -1, 1 ], [ -0.022, 0.022 ]) |
|
expression[0, 19, 2] += numpy.interp(face_editor_mouth_pout, [ -1, 1 ], [ -0.025, 0.025 ]) |
|
expression[0, 20, 2] -= numpy.interp(face_editor_mouth_pout, [ -1, 1 ], [ -0.002, 0.002 ]) |
|
return expression |
|
|
|
|
|
def edit_mouth_purse(expression : LivePortraitExpression) -> LivePortraitExpression: |
|
face_editor_mouth_purse = state_manager.get_item('face_editor_mouth_purse') |
|
if face_editor_mouth_purse > 0: |
|
expression[0, 19, 1] -= numpy.interp(face_editor_mouth_purse, [ -1, 1 ], [ -0.04, 0.04 ]) |
|
expression[0, 19, 2] -= numpy.interp(face_editor_mouth_purse, [ -1, 1 ], [ -0.02, 0.02 ]) |
|
else: |
|
expression[0, 14, 1] -= numpy.interp(face_editor_mouth_purse, [ -1, 1 ], [ -0.02, 0.02 ]) |
|
expression[0, 17, 2] += numpy.interp(face_editor_mouth_purse, [ -1, 1 ], [ -0.01, 0.01 ]) |
|
expression[0, 19, 2] -= numpy.interp(face_editor_mouth_purse, [ -1, 1 ], [ -0.015, 0.015 ]) |
|
expression[0, 20, 2] -= numpy.interp(face_editor_mouth_purse, [ -1, 1 ], [ -0.002, 0.002 ]) |
|
return expression |
|
|
|
|
|
def edit_mouth_smile(expression : LivePortraitExpression) -> LivePortraitExpression: |
|
face_editor_mouth_smile = state_manager.get_item('face_editor_mouth_smile') |
|
if face_editor_mouth_smile > 0: |
|
expression[0, 20, 1] -= numpy.interp(face_editor_mouth_smile, [ -1, 1 ], [ -0.015, 0.015 ]) |
|
expression[0, 14, 1] -= numpy.interp(face_editor_mouth_smile, [ -1, 1 ], [ -0.025, 0.025 ]) |
|
expression[0, 17, 1] += numpy.interp(face_editor_mouth_smile, [ -1, 1 ], [ -0.01, 0.01 ]) |
|
expression[0, 17, 2] += numpy.interp(face_editor_mouth_smile, [ -1, 1 ], [ -0.004, 0.004 ]) |
|
expression[0, 3, 1] -= numpy.interp(face_editor_mouth_smile, [ -1, 1 ], [ -0.0045, 0.0045 ]) |
|
expression[0, 7, 1] -= numpy.interp(face_editor_mouth_smile, [ -1, 1 ], [ -0.0045, 0.0045 ]) |
|
else: |
|
expression[0, 14, 1] -= numpy.interp(face_editor_mouth_smile, [ -1, 1 ], [ -0.02, 0.02 ]) |
|
expression[0, 17, 1] += numpy.interp(face_editor_mouth_smile, [ -1, 1 ], [ -0.003, 0.003 ]) |
|
expression[0, 19, 1] += numpy.interp(face_editor_mouth_smile, [ -1, 1 ], [ -0.02, 0.02 ]) |
|
expression[0, 19, 2] -= numpy.interp(face_editor_mouth_smile, [ -1, 1 ], [ -0.005, 0.005 ]) |
|
expression[0, 20, 2] += numpy.interp(face_editor_mouth_smile, [ -1, 1 ], [ -0.01, 0.01 ]) |
|
expression[0, 3, 1] += numpy.interp(face_editor_mouth_smile, [ -1, 1 ], [ -0.0045, 0.0045 ]) |
|
expression[0, 7, 1] += numpy.interp(face_editor_mouth_smile, [ -1, 1 ], [ -0.0045, 0.0045 ]) |
|
return expression |
|
|
|
|
|
def edit_head_rotation(pitch : LivePortraitPitch, yaw : LivePortraitYaw, roll : LivePortraitRoll) -> LivePortraitRotation: |
|
face_editor_head_pitch = state_manager.get_item('face_editor_head_pitch') |
|
face_editor_head_yaw = state_manager.get_item('face_editor_head_yaw') |
|
face_editor_head_roll = state_manager.get_item('face_editor_head_roll') |
|
edit_pitch = pitch + float(numpy.interp(face_editor_head_pitch, [ -1, 1 ], [ 20, -20 ])) |
|
edit_yaw = yaw + float(numpy.interp(face_editor_head_yaw, [ -1, 1 ], [ 60, -60 ])) |
|
edit_roll = roll + float(numpy.interp(face_editor_head_roll, [ -1, 1 ], [ -15, 15 ])) |
|
edit_pitch, edit_yaw, edit_roll = limit_euler_angles(pitch, yaw, roll, edit_pitch, edit_yaw, edit_roll) |
|
rotation = create_rotation(edit_pitch, edit_yaw, edit_roll) |
|
return rotation |
|
|
|
|
|
def calc_distance_ratio(face_landmark_68 : FaceLandmark68, top_index : int, bottom_index : int, left_index : int, right_index : int) -> float: |
|
vertical_direction = face_landmark_68[top_index] - face_landmark_68[bottom_index] |
|
horizontal_direction = face_landmark_68[left_index] - face_landmark_68[right_index] |
|
distance_ratio = float(numpy.linalg.norm(vertical_direction) / (numpy.linalg.norm(horizontal_direction) + 1e-6)) |
|
return distance_ratio |
|
|
|
|
|
def prepare_crop_frame(crop_vision_frame : VisionFrame) -> VisionFrame: |
|
model_size = get_model_options().get('size') |
|
prepare_size = (model_size[0] // 2, model_size[1] // 2) |
|
crop_vision_frame = cv2.resize(crop_vision_frame, prepare_size, interpolation = cv2.INTER_AREA) |
|
crop_vision_frame = crop_vision_frame[:, :, ::-1] / 255.0 |
|
crop_vision_frame = numpy.expand_dims(crop_vision_frame.transpose(2, 0, 1), axis = 0).astype(numpy.float32) |
|
return crop_vision_frame |
|
|
|
|
|
def normalize_crop_frame(crop_vision_frame : VisionFrame) -> VisionFrame: |
|
crop_vision_frame = crop_vision_frame.transpose(1, 2, 0).clip(0, 1) |
|
crop_vision_frame = (crop_vision_frame * 255.0) |
|
crop_vision_frame = crop_vision_frame.astype(numpy.uint8)[:, :, ::-1] |
|
return crop_vision_frame |
|
|
|
|
|
def get_reference_frame(source_face : Face, target_face : Face, temp_vision_frame : VisionFrame) -> VisionFrame: |
|
pass |
|
|
|
|
|
def process_frame(inputs : FaceEditorInputs) -> VisionFrame: |
|
reference_faces = inputs.get('reference_faces') |
|
target_vision_frame = inputs.get('target_vision_frame') |
|
many_faces = sort_and_filter_faces(get_many_faces([ target_vision_frame ])) |
|
|
|
if state_manager.get_item('face_selector_mode') == 'many': |
|
if many_faces: |
|
for target_face in many_faces: |
|
target_vision_frame = edit_face(target_face, target_vision_frame) |
|
if state_manager.get_item('face_selector_mode') == 'one': |
|
target_face = get_one_face(many_faces) |
|
if target_face: |
|
target_vision_frame = edit_face(target_face, target_vision_frame) |
|
if state_manager.get_item('face_selector_mode') == 'reference': |
|
similar_faces = find_similar_faces(many_faces, reference_faces, state_manager.get_item('reference_face_distance')) |
|
if similar_faces: |
|
for similar_face in similar_faces: |
|
target_vision_frame = edit_face(similar_face, target_vision_frame) |
|
return target_vision_frame |
|
|
|
|
|
def process_frames(source_path : List[str], queue_payloads : List[QueuePayload], update_progress : UpdateProgress) -> None: |
|
reference_faces = get_reference_faces() if 'reference' in state_manager.get_item('face_selector_mode') else None |
|
|
|
for queue_payload in process_manager.manage(queue_payloads): |
|
target_vision_path = queue_payload['frame_path'] |
|
target_vision_frame = read_image(target_vision_path) |
|
output_vision_frame = process_frame( |
|
{ |
|
'reference_faces': reference_faces, |
|
'target_vision_frame': target_vision_frame |
|
}) |
|
write_image(target_vision_path, output_vision_frame) |
|
update_progress(1) |
|
|
|
|
|
def process_image(source_path : str, target_path : str, output_path : str) -> None: |
|
reference_faces = get_reference_faces() if 'reference' in state_manager.get_item('face_selector_mode') else None |
|
target_vision_frame = read_static_image(target_path) |
|
output_vision_frame = process_frame( |
|
{ |
|
'reference_faces': reference_faces, |
|
'target_vision_frame': target_vision_frame |
|
}) |
|
write_image(output_path, output_vision_frame) |
|
|
|
|
|
def process_video(source_paths : List[str], temp_frame_paths : List[str]) -> None: |
|
processors.multi_process_frames(None, temp_frame_paths, process_frames) |
|
|