Spaces:
Sleeping
Sleeping
import os | |
import openai | |
import time | |
# Set API key | |
os.environ["OPENAI_API_KEY"] = "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" | |
openai.api_key = os.getenv("OPENAI_API_KEY") | |
MAX_PROMPTS_PER_SESSION = 5 | |
THROTTLE_SECONDS = 30 | |
last_usage_time = {} | |
def codette_terminal(prompt, model_name, generate_image, generate_video, session_id, batch_size, video_steps, fps): | |
if session_id not in chat_memory: | |
chat_memory[session_id] = [] | |
if prompt.lower() in ["exit", "quit"]: | |
chat_memory[session_id] = [] | |
yield "π§ Codette signing off... Session reset.", None, None | |
return | |
# --- Usage limits for fine-tuned model only --- | |
if model_name == "Codette Fine-Tuned (v9)": | |
count = sum(1 for line in chat_memory[session_id] if line.startswith("ποΈ You >")) | |
if count >= MAX_PROMPTS_PER_SESSION: | |
yield "[π Usage Limit] You've reached the max prompt limit (5) for this session.", None, None | |
return | |
now = time.time() | |
if now - last_usage_time.get(session_id, 0) < THROTTLE_SECONDS: | |
wait = int(THROTTLE_SECONDS - (now - last_usage_time[session_id])) | |
yield f"[β³ Throttle] Wait {wait}s before trying again.", None, None | |
return | |
last_usage_time[session_id] = now | |
response_so_far = "" | |
if model_name == "Codette Fine-Tuned (v9)": | |
try: | |
response = openai.ChatCompletion.create( | |
model="ft:gpt-4.1-2025-04-14:raiffs-bits:codette-final:BO907H7Z", | |
messages=[{"role": "user", "content": prompt}], | |
temperature=0.7, | |
max_tokens=256 | |
) | |
output = response.choices[0].message.content.strip() | |
except Exception as e: | |
yield f"[OpenAI fine-tuned model error]: {e}", None, None | |
return | |
else: | |
if model_name not in text_model_cache: | |
try: | |
text_model_cache[model_name] = pipeline( | |
"text-generation", | |
model=AVAILABLE_MODELS[model_name], | |
device=0 if device == "cuda" else -1 | |
) | |
except Exception as e: | |
yield f"[Text model error]: {e}", None, None | |
return | |
generator = text_model_cache[model_name] | |
try: | |
output = generator(prompt, max_length=100, do_sample=True, num_return_sequences=1)[0]['generated_text'].strip() | |
except Exception as e: | |
yield f"[Text generation error]: {e}", None, None | |
return | |
for char in output: | |
response_so_far += char | |
temp_log = chat_memory[session_id][:] | |
temp_log.append(f"ποΈ You > {prompt}") | |
temp_log.append(f"π§ Codette > {response_so_far}") | |
yield "\n".join(temp_log[-10:]), None, None | |
time.sleep(0.01) | |
chat_memory[session_id].append(f"ποΈ You > {prompt}") | |
chat_memory[session_id].append(f"π§ Codette > {output}") | |
imgs = None | |
if generate_image and image_enabled: | |
try: | |
result = image_generator(prompt, num_images_per_prompt=batch_size) | |
imgs = result.images | |
except Exception as e: | |
response_so_far += f"\n[Image error]: {e}" | |
vid = None | |
if generate_video and video_enabled: | |
try: | |
result = video_pipeline(prompt, num_inference_steps=video_steps) | |
frames = result.frames | |
temp_video_path = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False).name | |
imageio.mimsave(temp_video_path, frames, fps=fps) | |
vid = temp_video_path | |
except Exception as e: | |
response_so_far += f"\n[Video error]: {e}" | |
yield "\n".join(chat_memory[session_id][-10:]), imgs, vid | |