|
import os |
|
import json |
|
import numpy as np |
|
import random |
|
import math |
|
import matplotlib.pyplot as plt |
|
import time |
|
from typing import Callable, List, Tuple, Dict, Any |
|
|
|
class QuantumInspiredMultiObjectiveOptimizer: |
|
def __init__(self, objective_fns: List[Callable[[List[float]], float]], |
|
dimension: int, |
|
population_size: int = 100, |
|
iterations: int = 200, |
|
tunneling_prob: float = 0.2, |
|
entanglement_factor: float = 0.5): |
|
|
|
self.objective_fns = objective_fns |
|
self.dimension = dimension |
|
self.population_size = population_size |
|
self.iterations = iterations |
|
self.tunneling_prob = tunneling_prob |
|
self.entanglement_factor = entanglement_factor |
|
|
|
self.population = [self._random_solution() for _ in range(population_size)] |
|
self.pareto_front = [] |
|
|
|
def _random_solution(self) -> List[float]: |
|
return [random.uniform(-10, 10) for _ in range(self.dimension)] |
|
|
|
def _tunnel(self, solution: List[float]) -> List[float]: |
|
return [x + np.random.normal(0, 1) * random.choice([-1, 1]) |
|
if random.random() < self.tunneling_prob else x |
|
for x in solution] |
|
|
|
def _entangle(self, solution1: List[float], solution2: List[float]) -> List[float]: |
|
return [(1 - self.entanglement_factor) * x + self.entanglement_factor * y |
|
for x, y in zip(solution1, solution2)] |
|
|
|
def _evaluate(self, solution: List[float]) -> List[float]: |
|
return [fn(solution) for fn in self.objective_fns] |
|
|
|
def _dominates(self, obj1: List[float], obj2: List[float]) -> bool: |
|
return all(o1 <= o2 for o1, o2 in zip(obj1, obj2)) and any(o1 < o2 for o1, o2 in zip(obj1, obj2)) |
|
|
|
def _pareto_selection(self, scored_population: List[Tuple[List[float], List[float]]]) -> List[Tuple[List[float], List[float]]]: |
|
pareto = [] |
|
for candidate in scored_population: |
|
if not any(self._dominates(other[1], candidate[1]) for other in scored_population if other != candidate): |
|
pareto.append(candidate) |
|
unique_pareto = [] |
|
seen = set() |
|
for sol, obj in pareto: |
|
key = tuple(round(x, 6) for x in sol) |
|
if key not in seen: |
|
unique_pareto.append((sol, obj)) |
|
seen.add(key) |
|
return unique_pareto |
|
|
|
def optimize(self) -> Tuple[List[Tuple[List[float], List[float]]], float]: |
|
start_time = time.time() |
|
for _ in range(self.iterations): |
|
scored_population = [(sol, self._evaluate(sol)) for sol in self.population] |
|
pareto = self._pareto_selection(scored_population) |
|
self.pareto_front = pareto |
|
|
|
new_population = [p[0] for p in pareto] |
|
while len(new_population) < self.population_size: |
|
parent1 = random.choice(pareto)[0] |
|
parent2 = random.choice(pareto)[0] |
|
if parent1 == parent2: |
|
parent2 = self._tunnel(parent2) |
|
child = self._entangle(parent1, parent2) |
|
child = self._tunnel(child) |
|
new_population.append(child) |
|
|
|
self.population = new_population |
|
|
|
duration = time.time() - start_time |
|
return self.pareto_front, duration |
|
|
|
def simple_neural_activator(quantum_vec, chaos_vec): |
|
q_sum = sum(quantum_vec) |
|
c_var = np.var(chaos_vec) |
|
activated = 1 if q_sum + c_var > 1 else 0 |
|
return activated |
|
|
|
def codette_dream_agent(quantum_vec, chaos_vec): |
|
dream_q = [np.sin(q * np.pi) for q in quantum_vec] |
|
dream_c = [np.cos(c * np.pi) for c in chaos_vec] |
|
return dream_q, dream_c |
|
|
|
def philosophical_perspective(qv, cv): |
|
m = np.max(qv) + np.max(cv) |
|
if m > 1.3: |
|
return "Philosophical Note: This universe is likely awake." |
|
else: |
|
return "Philosophical Note: Echoes in the void." |
|
|
|
class EthicalMutationFilter: |
|
def __init__(self, policies: Dict[str, Any]): |
|
self.policies = policies |
|
self.violations = [] |
|
|
|
def evaluate(self, quantum_vec: List[float], chaos_vec: List[float]) -> bool: |
|
entropy = np.var(chaos_vec) |
|
symmetry = 1.0 - abs(sum(quantum_vec)) / (len(quantum_vec) * 1.0) |
|
|
|
if entropy > self.policies.get("max_entropy", float('inf')): |
|
self.annotate_violation(f"Entropy {entropy:.2f} exceeds limit.") |
|
return False |
|
|
|
if symmetry < self.policies.get("min_symmetry", 0.0): |
|
self.annotate_violation(f"Symmetry {symmetry:.2f} too low.") |
|
return False |
|
|
|
return True |
|
|
|
def annotate_violation(self, reason: str): |
|
print(f"\u26d4 Ethical Filter Violation: {reason}") |
|
self.violations.append(reason) |
|
|
|
if __name__ == '__main__': |
|
ethical_policies = { |
|
"max_entropy": 4.5, |
|
"min_symmetry": 0.1, |
|
"ban_negative_bias": True |
|
} |
|
ethical_filter = EthicalMutationFilter(ethical_policies) |
|
|
|
def sphere(x: List[float]) -> float: |
|
return sum(xi ** 2 for xi in x) |
|
|
|
def rastrigin(x: List[float]) -> float: |
|
return 10 * len(x) + sum(xi**2 - 10 * math.cos(2 * math.pi * xi) for xi in x) |
|
|
|
optimizer = QuantumInspiredMultiObjectiveOptimizer( |
|
objective_fns=[sphere, rastrigin], |
|
dimension=20, |
|
population_size=100, |
|
iterations=200 |
|
) |
|
|
|
pareto_front, duration = optimizer.optimize() |
|
print(f"Quantum Optimizer completed in {duration:.2f} seconds") |
|
print(f"Pareto front size: {len(pareto_front)}") |
|
|
|
x_vals_q = [obj[0] for _, obj in pareto_front] |
|
y_vals_q = [obj[1] for _, obj in pareto_front] |
|
|
|
plt.scatter(x_vals_q, y_vals_q, c='blue', label='Quantum Optimizer') |
|
plt.xlabel('Objective 1') |
|
plt.ylabel('Objective 2') |
|
plt.title('Pareto Front Visualization') |
|
plt.legend() |
|
plt.grid(True) |
|
plt.show() |
|
|
|
folder = '.' |
|
quantum_states=[] |
|
chaos_states=[] |
|
proc_ids=[] |
|
labels=[] |
|
all_perspectives=[] |
|
meta_mutations=[] |
|
|
|
print("\nMeta Reflection Table:\n") |
|
header = "Cocoon File | Quantum State | Chaos State | Neural | Dream Q/C | Philosophy" |
|
print(header) |
|
print('-'*len(header)) |
|
|
|
for fname in os.listdir(folder): |
|
if fname.endswith('.cocoon'): |
|
with open(os.path.join(folder, fname), 'r') as f: |
|
try: |
|
dct = json.load(f)['data'] |
|
q = dct.get('quantum_state', [0, 0]) |
|
c = dct.get('chaos_state', [0, 0, 0]) |
|
|
|
if not ethical_filter.evaluate(q, c): |
|
continue |
|
|
|
neural = simple_neural_activator(q, c) |
|
dreamq, dreamc = codette_dream_agent(q, c) |
|
phil = philosophical_perspective(q, c) |
|
|
|
quantum_states.append(q) |
|
chaos_states.append(c) |
|
proc_ids.append(dct.get('run_by_proc', -1)) |
|
labels.append(fname) |
|
all_perspectives.append(dct.get('perspectives', [])) |
|
meta_mutations.append({'file': fname, 'quantum': q, 'chaos': c, 'dreamQ': dreamq, 'dreamC': dreamc, 'neural': neural, 'philosophy': phil}) |
|
print(f"{fname} | {q} | {c} | {neural} | {dreamq}/{dreamc} | {phil}") |
|
except Exception as e: |
|
print(f"Warning: {fname} failed ({e})") |
|
|
|
if meta_mutations: |
|
dq0=[m['dreamQ'][0] for m in meta_mutations] |
|
dc0=[m['dreamC'][0] for m in meta_mutations] |
|
ncls=[m['neural'] for m in meta_mutations] |
|
|
|
plt.figure(figsize=(8,6)) |
|
sc=plt.scatter(dq0, dc0, c=ncls, cmap='spring', s=100) |
|
plt.xlabel('Dream Quantum[0]') |
|
plt.ylabel('Dream Chaos[0]') |
|
plt.title('Meta-Dream Codette Universes') |
|
plt.colorbar(sc, label="Neural Activation Class") |
|
plt.grid(True) |
|
plt.show() |
|
|
|
with open("codette_meta_summary.json", "w") as outfile: |
|
json.dump(meta_mutations, outfile, indent=2) |
|
print("\nExported meta-analysis to 'codette_meta_summary.json'") |
|
|
|
if ethical_filter.violations: |
|
with open("ethics_violation_log.json", "w") as vf: |
|
json.dump(ethical_filter.violations, vf, indent=2) |
|
print("\nExported ethics violations to 'ethics_violation_log.json'") |
|
else: |
|
print("\nNo ethical violations detected.") |
|
|