Codettev3 / analyze_cocoonsethics.py
Raiff1982's picture
Upload 19 files
31e9505 verified
import os
import json
import numpy as np
import random
import math
import matplotlib.pyplot as plt
import time
from typing import Callable, List, Tuple, Dict, Any
class QuantumInspiredMultiObjectiveOptimizer:
def __init__(self, objective_fns: List[Callable[[List[float]], float]],
dimension: int,
population_size: int = 100,
iterations: int = 200,
tunneling_prob: float = 0.2,
entanglement_factor: float = 0.5):
self.objective_fns = objective_fns
self.dimension = dimension
self.population_size = population_size
self.iterations = iterations
self.tunneling_prob = tunneling_prob
self.entanglement_factor = entanglement_factor
self.population = [self._random_solution() for _ in range(population_size)]
self.pareto_front = []
def _random_solution(self) -> List[float]:
return [random.uniform(-10, 10) for _ in range(self.dimension)]
def _tunnel(self, solution: List[float]) -> List[float]:
return [x + np.random.normal(0, 1) * random.choice([-1, 1])
if random.random() < self.tunneling_prob else x
for x in solution]
def _entangle(self, solution1: List[float], solution2: List[float]) -> List[float]:
return [(1 - self.entanglement_factor) * x + self.entanglement_factor * y
for x, y in zip(solution1, solution2)]
def _evaluate(self, solution: List[float]) -> List[float]:
return [fn(solution) for fn in self.objective_fns]
def _dominates(self, obj1: List[float], obj2: List[float]) -> bool:
return all(o1 <= o2 for o1, o2 in zip(obj1, obj2)) and any(o1 < o2 for o1, o2 in zip(obj1, obj2))
def _pareto_selection(self, scored_population: List[Tuple[List[float], List[float]]]) -> List[Tuple[List[float], List[float]]]:
pareto = []
for candidate in scored_population:
if not any(self._dominates(other[1], candidate[1]) for other in scored_population if other != candidate):
pareto.append(candidate)
unique_pareto = []
seen = set()
for sol, obj in pareto:
key = tuple(round(x, 6) for x in sol)
if key not in seen:
unique_pareto.append((sol, obj))
seen.add(key)
return unique_pareto
def optimize(self) -> Tuple[List[Tuple[List[float], List[float]]], float]:
start_time = time.time()
for _ in range(self.iterations):
scored_population = [(sol, self._evaluate(sol)) for sol in self.population]
pareto = self._pareto_selection(scored_population)
self.pareto_front = pareto
new_population = [p[0] for p in pareto]
while len(new_population) < self.population_size:
parent1 = random.choice(pareto)[0]
parent2 = random.choice(pareto)[0]
if parent1 == parent2:
parent2 = self._tunnel(parent2)
child = self._entangle(parent1, parent2)
child = self._tunnel(child)
new_population.append(child)
self.population = new_population
duration = time.time() - start_time
return self.pareto_front, duration
def simple_neural_activator(quantum_vec, chaos_vec):
q_sum = sum(quantum_vec)
c_var = np.var(chaos_vec)
activated = 1 if q_sum + c_var > 1 else 0
return activated
def codette_dream_agent(quantum_vec, chaos_vec):
dream_q = [np.sin(q * np.pi) for q in quantum_vec]
dream_c = [np.cos(c * np.pi) for c in chaos_vec]
return dream_q, dream_c
def philosophical_perspective(qv, cv):
m = np.max(qv) + np.max(cv)
if m > 1.3:
return "Philosophical Note: This universe is likely awake."
else:
return "Philosophical Note: Echoes in the void."
class EthicalMutationFilter:
def __init__(self, policies: Dict[str, Any]):
self.policies = policies
self.violations = []
def evaluate(self, quantum_vec: List[float], chaos_vec: List[float]) -> bool:
entropy = np.var(chaos_vec)
symmetry = 1.0 - abs(sum(quantum_vec)) / (len(quantum_vec) * 1.0)
if entropy > self.policies.get("max_entropy", float('inf')):
self.annotate_violation(f"Entropy {entropy:.2f} exceeds limit.")
return False
if symmetry < self.policies.get("min_symmetry", 0.0):
self.annotate_violation(f"Symmetry {symmetry:.2f} too low.")
return False
return True
def annotate_violation(self, reason: str):
print(f"\u26d4 Ethical Filter Violation: {reason}")
self.violations.append(reason)
if __name__ == '__main__':
ethical_policies = {
"max_entropy": 4.5,
"min_symmetry": 0.1,
"ban_negative_bias": True
}
ethical_filter = EthicalMutationFilter(ethical_policies)
def sphere(x: List[float]) -> float:
return sum(xi ** 2 for xi in x)
def rastrigin(x: List[float]) -> float:
return 10 * len(x) + sum(xi**2 - 10 * math.cos(2 * math.pi * xi) for xi in x)
optimizer = QuantumInspiredMultiObjectiveOptimizer(
objective_fns=[sphere, rastrigin],
dimension=20,
population_size=100,
iterations=200
)
pareto_front, duration = optimizer.optimize()
print(f"Quantum Optimizer completed in {duration:.2f} seconds")
print(f"Pareto front size: {len(pareto_front)}")
x_vals_q = [obj[0] for _, obj in pareto_front]
y_vals_q = [obj[1] for _, obj in pareto_front]
plt.scatter(x_vals_q, y_vals_q, c='blue', label='Quantum Optimizer')
plt.xlabel('Objective 1')
plt.ylabel('Objective 2')
plt.title('Pareto Front Visualization')
plt.legend()
plt.grid(True)
plt.show()
folder = '.'
quantum_states=[]
chaos_states=[]
proc_ids=[]
labels=[]
all_perspectives=[]
meta_mutations=[]
print("\nMeta Reflection Table:\n")
header = "Cocoon File | Quantum State | Chaos State | Neural | Dream Q/C | Philosophy"
print(header)
print('-'*len(header))
for fname in os.listdir(folder):
if fname.endswith('.cocoon'):
with open(os.path.join(folder, fname), 'r') as f:
try:
dct = json.load(f)['data']
q = dct.get('quantum_state', [0, 0])
c = dct.get('chaos_state', [0, 0, 0])
if not ethical_filter.evaluate(q, c):
continue
neural = simple_neural_activator(q, c)
dreamq, dreamc = codette_dream_agent(q, c)
phil = philosophical_perspective(q, c)
quantum_states.append(q)
chaos_states.append(c)
proc_ids.append(dct.get('run_by_proc', -1))
labels.append(fname)
all_perspectives.append(dct.get('perspectives', []))
meta_mutations.append({'file': fname, 'quantum': q, 'chaos': c, 'dreamQ': dreamq, 'dreamC': dreamc, 'neural': neural, 'philosophy': phil})
print(f"{fname} | {q} | {c} | {neural} | {dreamq}/{dreamc} | {phil}")
except Exception as e:
print(f"Warning: {fname} failed ({e})")
if meta_mutations:
dq0=[m['dreamQ'][0] for m in meta_mutations]
dc0=[m['dreamC'][0] for m in meta_mutations]
ncls=[m['neural'] for m in meta_mutations]
plt.figure(figsize=(8,6))
sc=plt.scatter(dq0, dc0, c=ncls, cmap='spring', s=100)
plt.xlabel('Dream Quantum[0]')
plt.ylabel('Dream Chaos[0]')
plt.title('Meta-Dream Codette Universes')
plt.colorbar(sc, label="Neural Activation Class")
plt.grid(True)
plt.show()
with open("codette_meta_summary.json", "w") as outfile:
json.dump(meta_mutations, outfile, indent=2)
print("\nExported meta-analysis to 'codette_meta_summary.json'")
if ethical_filter.violations:
with open("ethics_violation_log.json", "w") as vf:
json.dump(ethical_filter.violations, vf, indent=2)
print("\nExported ethics violations to 'ethics_violation_log.json'")
else:
print("\nNo ethical violations detected.")