Spaces:
Running
Running
from keras.models import Model | |
from keras.layers import Input | |
from keras.layers import Conv2D, BatchNormalization, MaxPooling2D, Dropout, Concatenate, UpSampling2D | |
class SegNet: | |
def __init__(self, n_filters, input_dim_x, input_dim_y, num_channels): | |
self.input_dim_x = input_dim_x | |
self.input_dim_y = input_dim_y | |
self.n_filters = n_filters | |
self.num_channels = num_channels | |
def get_SegNet(self): | |
convnet_input = Input(shape=(self.input_dim_x, self.input_dim_y, self.num_channels)) | |
encoder_conv1 = Conv2D(self.n_filters, kernel_size=9, activation='relu', padding='same')(convnet_input) | |
pool1 = MaxPooling2D(pool_size=(2, 2))(encoder_conv1) | |
encoder_conv2 = Conv2D(self.n_filters, kernel_size=5, activation='relu', padding='same')(pool1) | |
pool2 = MaxPooling2D(pool_size=(2, 2))(encoder_conv2) | |
encoder_conv3 = Conv2D(self.n_filters * 2, kernel_size=5, activation='relu', padding='same')(pool2) | |
pool3 = MaxPooling2D(pool_size=(2, 2))(encoder_conv3) | |
encoder_conv4 = Conv2D(self.n_filters * 2, kernel_size=5, activation='relu', padding='same')(pool3) | |
pool4 = MaxPooling2D(pool_size=(2, 2))(encoder_conv4) | |
conv5 = Conv2D(self.n_filters, kernel_size=5, activation='relu', padding='same')(pool4) | |
decoder_conv6 = Conv2D(self.n_filters, kernel_size=7, activation='relu', padding='same')(UpSampling2D(size=(2, 2))(conv5)) | |
decoder_conv7 = Conv2D(self.n_filters, kernel_size=5, activation='relu', padding='same')(UpSampling2D(size=(2, 2))(decoder_conv6)) | |
decoder_conv8 = Conv2D(self.n_filters, kernel_size=5, activation='relu', padding='same')(UpSampling2D(size=(2, 2))(decoder_conv7)) | |
#decoder_conv9 = Conv2D(self.n_filters, kernel_size=5, activation='relu', padding='same')(UpSampling2D(size=(2, 2))(decoder_conv8)) | |
decoder_conv9 = Conv2D(1, kernel_size=1, activation='sigmoid', padding='same')(UpSampling2D(size=(2, 2))(decoder_conv8)) | |
return Model(outputs=decoder_conv9, inputs=convnet_input), 'SegNet' |