Spaces:
Running
Running
import polars as pl | |
from data import data_df | |
from types import SimpleNamespace | |
def filter_data_by_date_and_game_kind(data, start_date=None, end_date=None, game_kind=None): | |
if start_date is not None: | |
data = data.filter(pl.col('date') >= start_date) | |
if end_date is not None: | |
data = data.filter(pl.col('date') <= end_date) | |
if game_kind is not None: | |
data = data.filter(pl.col('coarse_game_kind') == game_kind) | |
return data | |
def compute_team_games(data): | |
data = ( | |
data | |
.with_columns( | |
pl.col('gameId').unique().len().over('HomeTeamNameES').alias('home_games'), | |
pl.col('gameId').unique().len().over('VisitorTeamNameES').alias('visitor_games') | |
) | |
) | |
game_data = ( | |
data | |
.group_by('HomeTeamNameES') | |
.first() | |
[['HomeTeamNameES', 'home_games']] | |
.rename({'HomeTeamNameES': 'team'}) | |
.join( | |
( | |
data | |
.group_by('VisitorTeamNameES') | |
.first() | |
[['VisitorTeamNameES', 'visitor_games']] | |
.rename({'VisitorTeamNameES': 'team'}) | |
), | |
on='team', | |
) | |
.with_columns((pl.col('home_games')+pl.col('visitor_games')).alias('games')) | |
) | |
return ( | |
data | |
.drop('home_games', 'visitor_games') | |
.join( | |
game_data[['team', 'games']].rename({'games': 'home_games'}), | |
left_on='HomeTeamNameES', | |
right_on='team' | |
) | |
.join( | |
game_data[['team', 'games']].rename({'games': 'visitor_games'}), | |
left_on='VisitorTeamNameES', | |
right_on='team' | |
) | |
) | |
def compute_pitch_stats(data, player_type, pitch_class_type, min_pitches=1): | |
assert player_type in ('pitcher', 'batter') | |
assert pitch_class_type in ('general', 'specific') | |
id_col = 'pitId' if player_type == 'pitcher' else 'batId' | |
pitch_col = 'ballKind_code' if pitch_class_type == 'specific' else 'general_ballKind_code' | |
pitch_name_col = 'ballKind' if pitch_class_type == 'specific' else 'general_ballKind' | |
pitch_stats = ( | |
data | |
.group_by(id_col, pitch_col, 'pitcher_team_name_short') | |
.agg( | |
pl.first('pitcher_name'), | |
*([pl.first('general_ballKind')] if pitch_class_type == 'specific' else []), | |
pl.first(pitch_name_col), | |
pl.len().alias('count'), | |
pl.col('aux_bresult').struct.field('batType').drop_nulls().value_counts(normalize=True), | |
(pl.col('swing').sum() / pl.col('pitch').sum()).alias('Swing%'), | |
((pl.col('swing') & pl.col('zone')).sum() / pl.col('pitch').sum()).alias('Z-Swing%'), | |
((pl.col('swing') & ~pl.col('zone')).sum() / pl.col('pitch').sum()).alias('Chase%'), | |
((pl.col('swing') & ~pl.col('whiff')).sum()/pl.col('swing').sum()).alias('Contact%'), | |
((pl.col('zone') & pl.col('swing') & ~pl.col('whiff')).sum()/(pl.col('zone') & pl.col('swing')).sum()).alias('Z-Contact%'), | |
((~pl.col('zone') & pl.col('swing') & ~pl.col('whiff')).sum()/(~pl.col('zone') & pl.col('swing')).sum()).alias('O-Contact%'), | |
(pl.col('whiff').sum() / pl.col('swing').sum()).alias('Whiff%'), | |
(pl.col('whiff').sum() / pl.col('pitch').sum()).alias('SwStr%'), | |
(pl.col('csw').sum() / pl.col('pitch').sum()).alias('CSW%'), | |
(pl.col('zone').sum() / pl.col('pitch').sum()).alias('Zone%'), | |
(pl.when(pl.col('pitLR') == 'r').then(pl.col('x') < 0).otherwise(pl.col('x') > 0)).mean().alias('Glove%'), | |
(pl.when(pl.col('pitLR') == 'r').then(pl.col('x') >= 0).otherwise(pl.col('x') <= 0)).mean().alias('Arm%'), | |
(pl.col('y') > 125).mean().alias('High%'), | |
(pl.col('y') <= 125).mean().alias('Low%'), | |
(pl.col('x').is_between(-20, 20) & pl.col('y').is_between(100, 100+50)).mean().alias('MM%') | |
) | |
.with_columns( | |
(pl.col('count')/pl.sum('count').over('pitId')).alias('usage'), | |
(pl.col('count') >= min_pitches).alias('qualified') | |
) | |
.explode('batType') | |
.unnest('batType') | |
.pivot(on='batType', values='proportion') | |
.fill_null(0) | |
.with_columns( | |
(pl.col('G') + pl.col('B')).alias('GB%'), | |
(pl.col('F') + pl.col('P')).alias('FB%'), | |
pl.col('L').alias('LD%').round(2), | |
) | |
.drop('G', 'F', 'B', 'P', 'L', 'null') | |
.with_columns( | |
(pl.when(pl.col('qualified')).then(pl.col(stat)).rank(descending=((stat in ['FB%', 'LD%'] or 'Contact%' in stat)))/pl.when(pl.col('qualified')).then(pl.col(stat)).count()).alias(f'{stat}_pctl') | |
for stat in ['Swing%', 'Z-Swing%', 'Chase%', 'Contact%', 'Z-Contact%', 'O-Contact%', 'SwStr%', 'Whiff%', 'CSW%', 'GB%', 'FB%', 'LD%', 'Zone%'] | |
) | |
.rename({pitch_col: 'ballKind_code', pitch_name_col: 'ballKind'} if pitch_class_type == 'general' else {}) | |
.sort(id_col, 'count', descending=[False, True]) | |
) | |
return pitch_stats | |
def get_pitcher_stats(id, lr=None, game_kind=None, start_date=None, end_date=None, min_ip=1, min_pitches=1, pitch_class_type='specific'): | |
source_data = data_df.filter(pl.col('ballKind_code') != '-') | |
# if start_date is not None: | |
# source_data = source_data.filter(pl.col('date') >= start_date) | |
# if end_date is not None: | |
# source_data = source_data.filter(pl.col('date') <= end_date) | |
# | |
# if game_kind is not None: | |
# source_data = source_data.filter(pl.col('coarse_game_kind') == game_kind) | |
source_data = filter_data_by_date_and_game_kind(source_data, start_date=start_date, end_date=end_date, game_kind=game_kind) | |
source_data = ( | |
compute_team_games(source_data) | |
.with_columns( | |
pl.when(pl.col('half_inning').str.ends_with('1')).then('home_games').otherwise('visitor_games').first().over('pitId').alias('games'), | |
pl.col('inning_code').unique().len().over('pitId').alias('IP') | |
) | |
) | |
if min_ip == 'qualified': | |
source_data = source_data.with_columns((pl.col('IP') >= pl.col('games')).alias('qualified')) | |
else: | |
source_data = source_data.with_columns((pl.col('IP') >= min_ip).alias('qualified')) | |
if lr is not None: | |
source_data = source_data.filter(pl.col('batLR') == lr) | |
pitch_stats = compute_pitch_stats(source_data, player_type='pitcher', pitch_class_type=pitch_class_type, min_pitches=min_pitches).filter(pl.col('pitId') == id) | |
pitch_shapes = ( | |
source_data | |
.filter( | |
(pl.col('pitId') == id) & | |
pl.col('x').is_not_null() & | |
pl.col('y').is_not_null() & | |
(pl.col('ballSpeed') > 0) | |
) | |
[['pitId', 'general_ballKind_code', 'ballKind_code', 'ballSpeed', 'x', 'y']] | |
) | |
pitcher_stats = ( | |
source_data | |
.group_by('pitId') | |
.agg( | |
pl.col('pitcher_name').first(), | |
(pl.when(pl.col('presult').str.contains('strikeout')).then(1).otherwise(0).sum() / pl.col('pa_code').unique().len()).alias('K%'), | |
(pl.when(pl.col('presult') == 'Walk').then(1).otherwise(0).sum() / pl.col('pa_code').unique().len()).alias('BB%'), | |
(pl.col('csw').sum() / pl.col('pitch').sum()).alias('CSW%'), | |
pl.col('aux_bresult').struct.field('batType').drop_nulls().value_counts(normalize=True), | |
pl.first('qualified') | |
) | |
.explode('batType') | |
.unnest('batType') | |
.pivot(on='batType', values='proportion') | |
.fill_null(0) | |
.with_columns( | |
(pl.col('G') + pl.col('B')).alias('GB%'), | |
(pl.col('F') + pl.col('P')).alias('FB%'), | |
pl.col('L').alias('LD%'), | |
) | |
.drop('G', 'F', 'B', 'P', 'L') | |
.with_columns( | |
(pl.when(pl.col('qualified')).then(pl.col(stat)).rank(descending=(stat == 'BB%'))/pl.when(pl.col('qualified')).then(pl.col(stat)).count()).alias(f'{stat}_pctl') | |
for stat in ['CSW%', 'K%', 'BB%', 'GB%'] | |
) | |
.filter(pl.col('pitId') == id) | |
) | |
return SimpleNamespace(pitcher_stats=pitcher_stats, pitch_stats=pitch_stats, pitch_shapes=pitch_shapes) | |