Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import cv2
|
3 |
+
import numpy as np
|
4 |
+
from PIL import Image
|
5 |
+
import pickle
|
6 |
+
from tensorflow.keras.models import load_model
|
7 |
+
from tensorflow.keras.preprocessing.image import img_to_array
|
8 |
+
import easyocr
|
9 |
+
|
10 |
+
# === Load Model and Label Encoder ===
|
11 |
+
model_path = "MobileNetBest_Model.h5"
|
12 |
+
label_path = "MobileNet_Label_Encoder.pkl"
|
13 |
+
|
14 |
+
model = load_model(model_path)
|
15 |
+
print("Model loaded.")
|
16 |
+
|
17 |
+
# Load label encoder
|
18 |
+
try:
|
19 |
+
with open(label_path, 'rb') as f:
|
20 |
+
label_map = pickle.load(f)
|
21 |
+
index_to_label = {v: k for k, v in label_map.items()}
|
22 |
+
print("Label encoder loaded:", index_to_label)
|
23 |
+
except:
|
24 |
+
index_to_label = {0: "Handwritten", 1: "Computerized"}
|
25 |
+
print("Label encoder not found. Using default:", index_to_label)
|
26 |
+
|
27 |
+
# === Initialize EasyOCR Reader Once (with GPU) ===
|
28 |
+
reader = easyocr.Reader(['en'], gpu=True)
|
29 |
+
print("EasyOCR Reader initialized with GPU.")
|
30 |
+
|
31 |
+
# === Classify Region ===
|
32 |
+
def classify_text_region(region_img):
|
33 |
+
try:
|
34 |
+
region_img = cv2.resize(region_img, (224, 224))
|
35 |
+
region_img = region_img.astype("float32") / 255.0
|
36 |
+
region_img = img_to_array(region_img)
|
37 |
+
region_img = np.expand_dims(region_img, axis=0)
|
38 |
+
|
39 |
+
preds = model.predict(region_img)
|
40 |
+
|
41 |
+
if preds.shape[-1] == 1:
|
42 |
+
return "Computerized" if preds[0][0] > 0.5 else "Handwritten"
|
43 |
+
else:
|
44 |
+
class_idx = np.argmax(preds[0])
|
45 |
+
return index_to_label.get(class_idx, "Unknown")
|
46 |
+
except Exception as e:
|
47 |
+
print("Classification error:", e)
|
48 |
+
return "Unknown"
|
49 |
+
|
50 |
+
# === OCR + Annotation ===
|
51 |
+
def AnnotatedTextDetection_EasyOCR_from_array(img):
|
52 |
+
results = reader.readtext(img)
|
53 |
+
annotated_results = []
|
54 |
+
|
55 |
+
for (bbox, text, conf) in results[:20]: # Limit to top 20 boxes
|
56 |
+
if conf < 0.3 or text.strip() == "":
|
57 |
+
continue
|
58 |
+
|
59 |
+
x1, y1 = map(int, bbox[0])
|
60 |
+
x2, y2 = map(int, bbox[2])
|
61 |
+
crop = img[y1:y2, x1:x2]
|
62 |
+
if crop.size == 0:
|
63 |
+
continue
|
64 |
+
|
65 |
+
label = classify_text_region(crop)
|
66 |
+
annotated_results.append(f"{text.strip()} → {label}")
|
67 |
+
|
68 |
+
color = (0, 255, 0) if label == "Computerized" else (255, 0, 0)
|
69 |
+
cv2.rectangle(img, (x1, y1), (x2, y2), color, 2)
|
70 |
+
cv2.putText(img, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.6, color, 1)
|
71 |
+
|
72 |
+
return cv2.cvtColor(img, cv2.COLOR_BGR2RGB), "\n".join(annotated_results)
|
73 |
+
|
74 |
+
# === Gradio Wrapper ===
|
75 |
+
def infer(image):
|
76 |
+
img = np.array(image)
|
77 |
+
|
78 |
+
# Resize if image is too large
|
79 |
+
max_dim = 1000
|
80 |
+
if img.shape[0] > max_dim or img.shape[1] > max_dim:
|
81 |
+
scale = max_dim / max(img.shape[0], img.shape[1])
|
82 |
+
img = cv2.resize(img, (int(img.shape[1]*scale), int(img.shape[0]*scale)))
|
83 |
+
|
84 |
+
annotated_img, result_text = AnnotatedTextDetection_EasyOCR_from_array(img)
|
85 |
+
return Image.fromarray(annotated_img), result_text
|
86 |
+
|
87 |
+
# === Custom CSS ===
|
88 |
+
custom_css = """
|
89 |
+
body {
|
90 |
+
background-color: #e6f2ff;
|
91 |
+
}
|
92 |
+
.gradio-container {
|
93 |
+
border-radius: 12px;
|
94 |
+
padding: 20px;
|
95 |
+
border: 2px solid #007acc;
|
96 |
+
}
|
97 |
+
.gr-input, .gr-output {
|
98 |
+
border: 1px solid #007acc;
|
99 |
+
border-radius: 10px;
|
100 |
+
}
|
101 |
+
"""
|
102 |
+
|
103 |
+
# === Launch Interface ===
|
104 |
+
demo = gr.Interface(
|
105 |
+
fn=infer,
|
106 |
+
inputs=gr.Image(type="pil", label="Upload Image"),
|
107 |
+
outputs=[
|
108 |
+
gr.Image(type="pil", label="Annotated Image"),
|
109 |
+
gr.Textbox(label="Detected Text and Classification")
|
110 |
+
],
|
111 |
+
title="Text Detection and Classification",
|
112 |
+
description="This application detects text using EasyOCR and classifies each text region as Handwritten or Computerized using a MobileNet model.",
|
113 |
+
theme="soft",
|
114 |
+
css=custom_css
|
115 |
+
)
|
116 |
+
demo.launch()
|