Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn as nn | |
class BackboneBase(nn.Module): | |
"""Base class for backbone networks. Provides a standard interface for preprocessing inputs and | |
defining encoder dimensions. | |
Args: | |
nchannels (int): Number of input channels. | |
use_instance_norm (bool): Whether to apply instance normalization. | |
""" | |
def __init__(self, nchannels=3, use_instance_norm=False): | |
super().__init__() | |
assert nchannels > 0, "Number of channels must be positive." | |
self.nchannels = nchannels | |
self.use_instance_norm = use_instance_norm | |
self.norm = nn.InstanceNorm2d(nchannels) if use_instance_norm else None | |
def get_dim_layers_encoder(self): | |
"""Get dimensions of encoder layers.""" | |
raise NotImplementedError("Subclasses must implement this method.") | |
def _forward(self, x): | |
"""Define the forward pass for the backbone.""" | |
raise NotImplementedError("Subclasses must implement this method.") | |
def forward(self, x: torch.Tensor, preprocess=True): | |
"""Forward pass with optional preprocessing. | |
Args: | |
x (Tensor): Input tensor. | |
preprocess (bool): Whether to apply channel reduction. | |
""" | |
if preprocess: | |
if x.dim() != 4: | |
if x.dim() == 2 and x.shape[0] > 3 and x.shape[1] > 3: | |
x = x.unsqueeze(0).unsqueeze(0) | |
elif x.dim() == 3: | |
x = x.unsqueeze(0) | |
else: | |
raise ValueError(f"Unexpected input shape: {x.shape}") | |
if self.nchannels == 1 and x.shape[1] != 1: | |
if len(x.shape) == 4: # Assumes (batch, channel, height, width) | |
x = torch.mean(x, axis=1, keepdim=True) | |
else: | |
raise ValueError(f"Unexpected input shape: {x.shape}") | |
# | |
if self.nchannels == 3 and x.shape[1] == 1: | |
if len(x.shape) == 4: | |
x = x.repeat(1, 3, 1, 1) | |
else: | |
raise ValueError(f"Unexpected input shape: {x.shape}") | |
if self.use_instance_norm: | |
x = self.norm(x) | |
return self._forward(x) | |