Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
class InterpolateSparse2d(nn.Module): | |
""" | |
Interpolate 3D tensor given N sparse 2D positions | |
Input | |
x: list([C, H, W]) feature tensors at different scales (e.g. from a U-Net), ONLY the last one is used | |
pos: [N, 2] tensor of positions | |
H: int, height of the OUTPUT map | |
W: int, width of the OUTPUT map | |
Returns | |
[N, C] sampled features at 2d positions | |
""" | |
def __init__(self, mode="bicubic"): | |
super().__init__() | |
self.mode = mode | |
self.name = "InterpolateSparse2d" | |
def normgrid(self, x, H, W): | |
return 2.0 * (x / (torch.tensor([W - 1, H - 1], device=x.device, dtype=x.dtype))) - 1.0 | |
def forward(self, x, pos, H, W): | |
x = x[-1] # only use the last layer | |
# check if grid is float32 | |
if x.dtype != torch.float32: | |
x = x.to(torch.float32) | |
grid = self.normgrid(pos, H, W).unsqueeze(-2) | |
x = F.grid_sample(x, grid, mode=self.mode, align_corners=True) | |
return [x.permute(0, 2, 3, 1).squeeze(-2)] | |