Spaces:
Runtime error
Runtime error
| import os | |
| import glob | |
| import sys | |
| import argparse | |
| import logging | |
| import json | |
| import subprocess | |
| import numpy as np | |
| from scipy.io.wavfile import read | |
| import torch | |
| import regex as re | |
| MATPLOTLIB_FLAG = False | |
| logging.basicConfig(stream=sys.stdout, level=logging.DEBUG) | |
| logger = logging | |
| zh_pattern = re.compile(r'[\u4e00-\u9fa5]') | |
| en_pattern = re.compile(r'[a-zA-Z]') | |
| jp_pattern = re.compile(r'[\u3040-\u30ff\u31f0-\u31ff]') | |
| kr_pattern = re.compile(r'[\uac00-\ud7af\u1100-\u11ff\u3130-\u318f\ua960-\ua97f]') | |
| num_pattern=re.compile(r'[0-9]') | |
| comma=r"(?<=[.。!!??;;,,、::'\"‘“”’()()《》「」~——])" #向前匹配但固定长度 | |
| tags={'ZH':'[ZH]','EN':'[EN]','JP':'[JA]','KR':'[KR]'} | |
| def tag_cjke(text): | |
| '''为中英日韩加tag,中日正则分不开,故先分句分离中日再识别,以应对大部分情况''' | |
| sentences = re.split(r"([.。!!??;;,,、::'\"‘“”’()()【】《》「」~——]+ *(?![0-9]))", text) #分句,排除小数点 | |
| sentences.append("") | |
| sentences = ["".join(i) for i in zip(sentences[0::2],sentences[1::2])] | |
| # print(sentences) | |
| prev_lang=None | |
| tagged_text = "" | |
| for s in sentences: | |
| #全为符号跳过 | |
| nu = re.sub(r'[\s\p{P}]+', '', s, flags=re.U).strip() | |
| if len(nu)==0: | |
| continue | |
| s = re.sub(r'[()()《》「」【】‘“”’]+', '', s) | |
| jp=re.findall(jp_pattern, s) | |
| #本句含日语字符判断为日语 | |
| if len(jp)>0: | |
| prev_lang,tagged_jke=tag_jke(s,prev_lang) | |
| tagged_text +=tagged_jke | |
| else: | |
| prev_lang,tagged_cke=tag_cke(s,prev_lang) | |
| tagged_text +=tagged_cke | |
| return tagged_text | |
| def tag_jke(text,prev_sentence=None): | |
| '''为英日韩加tag''' | |
| # 初始化标记变量 | |
| tagged_text = "" | |
| prev_lang = None | |
| tagged=0 | |
| # 遍历文本 | |
| for char in text: | |
| # 判断当前字符属于哪种语言 | |
| if jp_pattern.match(char): | |
| lang = "JP" | |
| elif zh_pattern.match(char): | |
| lang = "JP" | |
| elif kr_pattern.match(char): | |
| lang = "KR" | |
| elif en_pattern.match(char): | |
| lang = "EN" | |
| # elif num_pattern.match(char): | |
| # lang = prev_sentence | |
| else: | |
| lang = None | |
| tagged_text += char | |
| continue | |
| # 如果当前语言与上一个语言不同,就添加标记 | |
| if lang != prev_lang: | |
| tagged=1 | |
| if prev_lang==None: # 开头 | |
| tagged_text =tags[lang]+tagged_text | |
| else: | |
| tagged_text =tagged_text+tags[prev_lang]+tags[lang] | |
| # 重置标记变量 | |
| prev_lang = lang | |
| # 添加当前字符到标记文本中 | |
| tagged_text += char | |
| # 在最后一个语言的结尾添加对应的标记 | |
| if prev_lang: | |
| tagged_text += tags[prev_lang] | |
| if not tagged: | |
| prev_lang=prev_sentence | |
| tagged_text =tags[prev_lang]+tagged_text+tags[prev_lang] | |
| return prev_lang,tagged_text | |
| def tag_cke(text,prev_sentence=None): | |
| '''为中英韩加tag''' | |
| # 初始化标记变量 | |
| tagged_text = "" | |
| prev_lang = None | |
| # 是否全略过未标签 | |
| tagged=0 | |
| # 遍历文本 | |
| for char in text: | |
| # 判断当前字符属于哪种语言 | |
| if zh_pattern.match(char): | |
| lang = "ZH" | |
| elif kr_pattern.match(char): | |
| lang = "KR" | |
| elif en_pattern.match(char): | |
| lang = "EN" | |
| # elif num_pattern.match(char): | |
| # lang = prev_sentence | |
| else: | |
| # 略过 | |
| lang = None | |
| tagged_text += char | |
| continue | |
| # 如果当前语言与上一个语言不同,添加标记 | |
| if lang != prev_lang: | |
| tagged=1 | |
| if prev_lang==None: # 开头 | |
| tagged_text =tags[lang]+tagged_text | |
| else: | |
| tagged_text =tagged_text+tags[prev_lang]+tags[lang] | |
| # 重置标记变量 | |
| prev_lang = lang | |
| # 添加当前字符到标记文本中 | |
| tagged_text += char | |
| # 在最后一个语言的结尾添加对应的标记 | |
| if prev_lang: | |
| tagged_text += tags[prev_lang] | |
| # 未标签则继承上一句标签 | |
| if tagged==0: | |
| prev_lang=prev_sentence | |
| tagged_text =tags[prev_lang]+tagged_text+tags[prev_lang] | |
| return prev_lang,tagged_text | |
| def load_checkpoint(checkpoint_path, model, optimizer=None, drop_speaker_emb=False): | |
| assert os.path.isfile(checkpoint_path) | |
| checkpoint_dict = torch.load(checkpoint_path, map_location='cpu') | |
| iteration = checkpoint_dict['iteration'] | |
| learning_rate = checkpoint_dict['learning_rate'] | |
| if optimizer is not None: | |
| optimizer.load_state_dict(checkpoint_dict['optimizer']) | |
| saved_state_dict = checkpoint_dict['model'] | |
| if hasattr(model, 'module'): | |
| state_dict = model.module.state_dict() | |
| else: | |
| state_dict = model.state_dict() | |
| new_state_dict = {} | |
| for k, v in state_dict.items(): | |
| try: | |
| if k == 'emb_g.weight': | |
| if drop_speaker_emb: | |
| new_state_dict[k] = v | |
| continue | |
| v[:saved_state_dict[k].shape[0], :] = saved_state_dict[k] | |
| new_state_dict[k] = v | |
| else: | |
| new_state_dict[k] = saved_state_dict[k] | |
| except: | |
| logger.info("%s is not in the checkpoint" % k) | |
| new_state_dict[k] = v | |
| if hasattr(model, 'module'): | |
| model.module.load_state_dict(new_state_dict) | |
| else: | |
| model.load_state_dict(new_state_dict) | |
| logger.info("Loaded checkpoint '{}' (iteration {})".format( | |
| checkpoint_path, iteration)) | |
| return model, optimizer, learning_rate, iteration | |
| def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path): | |
| logger.info("Saving model and optimizer state at iteration {} to {}".format( | |
| iteration, checkpoint_path)) | |
| if hasattr(model, 'module'): | |
| state_dict = model.module.state_dict() | |
| else: | |
| state_dict = model.state_dict() | |
| torch.save({'model': state_dict, | |
| 'iteration': iteration, | |
| 'optimizer': optimizer.state_dict() if optimizer is not None else None, | |
| 'learning_rate': learning_rate}, checkpoint_path) | |
| def summarize(writer, global_step, scalars={}, histograms={}, images={}, audios={}, audio_sampling_rate=22050): | |
| for k, v in scalars.items(): | |
| writer.add_scalar(k, v, global_step) | |
| for k, v in histograms.items(): | |
| writer.add_histogram(k, v, global_step) | |
| for k, v in images.items(): | |
| writer.add_image(k, v, global_step, dataformats='HWC') | |
| for k, v in audios.items(): | |
| writer.add_audio(k, v, global_step, audio_sampling_rate) | |
| def extract_digits(f): | |
| digits = "".join(filter(str.isdigit, f)) | |
| return int(digits) if digits else -1 | |
| def latest_checkpoint_path(dir_path, regex="G_[0-9]*.pth"): | |
| f_list = glob.glob(os.path.join(dir_path, regex)) | |
| f_list.sort(key=lambda f: extract_digits(f)) | |
| x = f_list[-1] | |
| print(f"latest_checkpoint_path:{x}") | |
| return x | |
| def oldest_checkpoint_path(dir_path, regex="G_[0-9]*.pth", preserved=4): | |
| f_list = glob.glob(os.path.join(dir_path, regex)) | |
| f_list.sort(key=lambda f: extract_digits(f)) | |
| if len(f_list) > preserved: | |
| x = f_list[0] | |
| print(f"oldest_checkpoint_path:{x}") | |
| return x | |
| return "" | |
| def plot_spectrogram_to_numpy(spectrogram): | |
| global MATPLOTLIB_FLAG | |
| if not MATPLOTLIB_FLAG: | |
| import matplotlib | |
| matplotlib.use("Agg") | |
| MATPLOTLIB_FLAG = True | |
| mpl_logger = logging.getLogger('matplotlib') | |
| mpl_logger.setLevel(logging.WARNING) | |
| import matplotlib.pylab as plt | |
| import numpy as np | |
| fig, ax = plt.subplots(figsize=(10, 2)) | |
| im = ax.imshow(spectrogram, aspect="auto", origin="lower", | |
| interpolation='none') | |
| plt.colorbar(im, ax=ax) | |
| plt.xlabel("Frames") | |
| plt.ylabel("Channels") | |
| plt.tight_layout() | |
| fig.canvas.draw() | |
| data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='') | |
| data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,)) | |
| plt.close() | |
| return data | |
| def plot_alignment_to_numpy(alignment, info=None): | |
| global MATPLOTLIB_FLAG | |
| if not MATPLOTLIB_FLAG: | |
| import matplotlib | |
| matplotlib.use("Agg") | |
| MATPLOTLIB_FLAG = True | |
| mpl_logger = logging.getLogger('matplotlib') | |
| mpl_logger.setLevel(logging.WARNING) | |
| import matplotlib.pylab as plt | |
| import numpy as np | |
| fig, ax = plt.subplots(figsize=(6, 4)) | |
| im = ax.imshow(alignment.transpose(), aspect='auto', origin='lower', | |
| interpolation='none') | |
| fig.colorbar(im, ax=ax) | |
| xlabel = 'Decoder timestep' | |
| if info is not None: | |
| xlabel += '\n\n' + info | |
| plt.xlabel(xlabel) | |
| plt.ylabel('Encoder timestep') | |
| plt.tight_layout() | |
| fig.canvas.draw() | |
| data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='') | |
| data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,)) | |
| plt.close() | |
| return data | |
| def load_wav_to_torch(full_path): | |
| sampling_rate, data = read(full_path) | |
| return torch.FloatTensor(data.astype(np.float32)), sampling_rate | |
| def load_filepaths_and_text(filename, split="|"): | |
| with open(filename, encoding='utf-8') as f: | |
| filepaths_and_text = [line.strip().split(split) for line in f] | |
| return filepaths_and_text | |
| def str2bool(v): | |
| if isinstance(v, bool): | |
| return v | |
| if v.lower() in ('yes', 'true', 't', 'y', '1'): | |
| return True | |
| elif v.lower() in ('no', 'false', 'f', 'n', '0'): | |
| return False | |
| else: | |
| raise argparse.ArgumentTypeError('Boolean value expected.') | |
| def get_hparams(init=True): | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument('-c', '--config', type=str, default="./configs/modified_finetune_speaker.json", | |
| help='JSON file for configuration') | |
| parser.add_argument('-m', '--model', type=str, default="pretrained_models", | |
| help='Model name') | |
| parser.add_argument('-n', '--max_epochs', type=int, default=50, | |
| help='finetune epochs') | |
| parser.add_argument('--cont', type=str2bool, default=False, help='whether to continue training on the latest checkpoint') | |
| parser.add_argument('--drop_speaker_embed', type=str2bool, default=False, help='whether to drop existing characters') | |
| parser.add_argument('--train_with_pretrained_model', type=str2bool, default=True, | |
| help='whether to train with pretrained model') | |
| parser.add_argument('--preserved', type=int, default=4, | |
| help='Number of preserved models') | |
| args = parser.parse_args() | |
| model_dir = os.path.join("./", args.model) | |
| if not os.path.exists(model_dir): | |
| os.makedirs(model_dir) | |
| config_path = args.config | |
| config_save_path = os.path.join(model_dir, "config.json") | |
| if init: | |
| with open(config_path, "r") as f: | |
| data = f.read() | |
| with open(config_save_path, "w") as f: | |
| f.write(data) | |
| else: | |
| with open(config_save_path, "r") as f: | |
| data = f.read() | |
| config = json.loads(data) | |
| hparams = HParams(**config) | |
| hparams.model_dir = model_dir | |
| hparams.max_epochs = args.max_epochs | |
| hparams.cont = args.cont | |
| hparams.drop_speaker_embed = args.drop_speaker_embed | |
| hparams.train_with_pretrained_model = args.train_with_pretrained_model | |
| hparams.preserved = args.preserved | |
| return hparams | |
| def get_hparams_from_dir(model_dir): | |
| config_save_path = os.path.join(model_dir, "config.json") | |
| with open(config_save_path, "r") as f: | |
| data = f.read() | |
| config = json.loads(data) | |
| hparams = HParams(**config) | |
| hparams.model_dir = model_dir | |
| return hparams | |
| def get_hparams_from_file(config_path): | |
| with open(config_path, "r", encoding="utf-8") as f: | |
| data = f.read() | |
| config = json.loads(data) | |
| hparams = HParams(**config) | |
| return hparams | |
| def check_git_hash(model_dir): | |
| source_dir = os.path.dirname(os.path.realpath(__file__)) | |
| if not os.path.exists(os.path.join(source_dir, ".git")): | |
| logger.warn("{} is not a git repository, therefore hash value comparison will be ignored.".format( | |
| source_dir | |
| )) | |
| return | |
| cur_hash = subprocess.getoutput("git rev-parse HEAD") | |
| path = os.path.join(model_dir, "githash") | |
| if os.path.exists(path): | |
| saved_hash = open(path).read() | |
| if saved_hash != cur_hash: | |
| logger.warn("git hash values are different. {}(saved) != {}(current)".format( | |
| saved_hash[:8], cur_hash[:8])) | |
| else: | |
| open(path, "w").write(cur_hash) | |
| def get_logger(model_dir, filename="train.log"): | |
| global logger | |
| logger = logging.getLogger(os.path.basename(model_dir)) | |
| logger.setLevel(logging.DEBUG) | |
| formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s") | |
| if not os.path.exists(model_dir): | |
| os.makedirs(model_dir) | |
| h = logging.FileHandler(os.path.join(model_dir, filename)) | |
| h.setLevel(logging.DEBUG) | |
| h.setFormatter(formatter) | |
| logger.addHandler(h) | |
| return logger | |
| class HParams(): | |
| def __init__(self, **kwargs): | |
| for k, v in kwargs.items(): | |
| if type(v) == dict: | |
| v = HParams(**v) | |
| self[k] = v | |
| def keys(self): | |
| return self.__dict__.keys() | |
| def items(self): | |
| return self.__dict__.items() | |
| def values(self): | |
| return self.__dict__.values() | |
| def __len__(self): | |
| return len(self.__dict__) | |
| def __getitem__(self, key): | |
| return getattr(self, key) | |
| def __setitem__(self, key, value): | |
| return setattr(self, key, value) | |
| def __contains__(self, key): | |
| return key in self.__dict__ | |
| def __repr__(self): | |
| return self.__dict__.__repr__() |