Spaces:
Running
Running
File size: 63,351 Bytes
f83c4f6 97d71ca f83c4f6 eb79113 f83c4f6 b75eec8 97d71ca b75eec8 05779db 97d71ca 05779db 97d71ca 05779db 97d71ca 3716fe1 90f6477 f83c4f6 acf3ed2 f83c4f6 acf3ed2 23980e2 acf3ed2 23980e2 acf3ed2 f83c4f6 23980e2 acf3ed2 23980e2 acf3ed2 23980e2 acf3ed2 f83c4f6 acf3ed2 b8f0f36 acf3ed2 f83c4f6 acf3ed2 f83c4f6 acf3ed2 23980e2 acf3ed2 23980e2 f83c4f6 acf3ed2 23980e2 acf3ed2 23980e2 acf3ed2 f83c4f6 23980e2 760ab34 f83c4f6 4b81303 23980e2 4b81303 23980e2 4b81303 23980e2 4b81303 23980e2 4b81303 f83c4f6 23980e2 f83c4f6 23980e2 f83c4f6 23980e2 f83c4f6 760ab34 23980e2 b8f0f36 f83c4f6 b8f0f36 760ab34 b8f0f36 760ab34 b8f0f36 760ab34 b8f0f36 f83c4f6 23980e2 760ab34 eb79113 6fe5290 eb79113 6fe5290 eb79113 6fe5290 eb79113 6fe5290 eb79113 6fe5290 eb79113 6fe5290 eb79113 6fe5290 eb79113 6fe5290 eb79113 6fe5290 eb79113 6fe5290 eb79113 6fe5290 eb79113 6fe5290 eb79113 6fe5290 eb79113 f83c4f6 eb79113 f83c4f6 6fad358 f83c4f6 2474cec f83c4f6 2474cec f83c4f6 2474cec f83c4f6 b8f0f36 f83c4f6 b8f0f36 f83c4f6 b8f0f36 6fe5290 b8f0f36 6fe5290 b8f0f36 f83c4f6 2474cec 76eed09 2474cec 76eed09 f83c4f6 cb72a92 f83c4f6 2474cec f83c4f6 6fad358 f83c4f6 6fad358 2474cec 6fad358 2474cec f83c4f6 53ff1f6 f83c4f6 6fad358 2474cec 6fad358 066d3c0 f83c4f6 6fad358 f83c4f6 0f1f004 f83c4f6 0f1f004 90f6477 0f1f004 f83c4f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 |
"""
Receipt Processing Pipeline - Hugging Face Spaces App
Ensemble classification, OCR, field extraction, anomaly detection, and agentic routing.
"""
import os
import torch
import torch.nn as nn
import numpy as np
import gradio as gr
import gradio.routes as gr_routes
import easyocr
import json
import re
from PIL import Image, ImageDraw
from datetime import datetime
from torchvision import transforms, models
from transformers import (
ViTForImageClassification,
ViTImageProcessor,
LayoutLMv3ForTokenClassification,
LayoutLMv3Processor,
)
from sklearn.ensemble import IsolationForest
import warnings
warnings.filterwarnings('ignore')
# ---------------------------------------------------------------------------
# Work around Gradio json_schema traversal crash:
# - guard bool schema entries
# ---------------------------------------------------------------------------
import gradio_client.utils as grc_utils
_orig_get_type = grc_utils.get_type
_orig_json_schema_to_python_type = grc_utils.json_schema_to_python_type
def _safe_get_type(schema):
if isinstance(schema, bool):
return "any"
return _orig_get_type(schema)
def _safe_json_schema_to_python_type(schema, defs=None):
if isinstance(schema, bool):
return "any"
try:
return _orig_json_schema_to_python_type(schema, defs)
except Exception:
return "any"
grc_utils.get_type = _safe_get_type
grc_utils.json_schema_to_python_type = _safe_json_schema_to_python_type
# ---------------------------------------------------------------------------
# JSON sanitation helper (convert numpy types & PIL-friendly outputs)
# ---------------------------------------------------------------------------
def to_jsonable(obj):
if isinstance(obj, dict):
return {k: to_jsonable(v) for k, v in obj.items()}
if isinstance(obj, (list, tuple)):
return [to_jsonable(v) for v in obj]
if isinstance(obj, (np.bool_, bool)):
return bool(obj)
if isinstance(obj, (np.integer,)):
return int(obj)
if isinstance(obj, (np.floating,)):
return float(obj)
if isinstance(obj, np.ndarray):
return obj.tolist()
if isinstance(obj, Image.Image):
return None # avoid serializing images; skip in JSON
return obj
# ---------------------------------------------------------------------------
# Feedback persistence helper (CSV; optionally include section label)
# ---------------------------------------------------------------------------
def save_feedback(assessment, notes, results_json_str, section="overall"):
try:
parsed = json.loads(results_json_str) if results_json_str else {}
except Exception:
parsed = {"raw": results_json_str}
entry = {
"timestamp": datetime.utcnow().isoformat(),
"section": section or "",
"assessment": assessment or "",
"notes": notes or "",
"results": parsed,
}
import csv
fieldnames = ["timestamp", "section", "assessment", "notes", "results"]
file_exists = os.path.exists("feedback_logs.csv")
with open("feedback_logs.csv", "a", newline="", encoding="utf-8") as f:
writer = csv.DictWriter(f, fieldnames=fieldnames)
if not file_exists:
writer.writeheader()
writer.writerow({
"timestamp": entry["timestamp"],
"section": entry.get("section", ""),
"assessment": entry["assessment"],
"notes": entry["notes"],
"results": json.dumps(entry["results"]),
})
return "✅ Feedback saved. (Stored in feedback_logs.csv)"
# ============================================================================
# Configuration
# ============================================================================
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
MODELS_DIR = 'models'
print(f"Device: {DEVICE}")
print(f"Models directory: {MODELS_DIR}")
# ============================================================================
# Model Classes
# ============================================================================
class DocumentClassifier:
"""ViT-based document classifier (receipt vs other)."""
def __init__(self, num_labels=2, model_path=None):
self.num_labels = num_labels
self.model = None
self.processor = None
self.model_path = model_path or os.path.join(MODELS_DIR, 'rvl_classifier.pt')
self.pretrained = 'WinKawaks/vit-tiny-patch16-224'
def load_model(self):
try:
self.processor = ViTImageProcessor.from_pretrained(self.pretrained)
except:
self.processor = ViTImageProcessor.from_pretrained('google/vit-base-patch16-224')
self.model = ViTForImageClassification.from_pretrained(
self.pretrained,
num_labels=self.num_labels,
ignore_mismatched_sizes=True
)
self.model = self.model.to(DEVICE)
self.model.eval()
return self.model
def load_weights(self, path):
if os.path.exists(path):
checkpoint = torch.load(path, map_location=DEVICE)
if isinstance(checkpoint, dict):
if 'model_state_dict' in checkpoint:
self.model.load_state_dict(checkpoint['model_state_dict'], strict=False)
elif 'state_dict' in checkpoint:
self.model.load_state_dict(checkpoint['state_dict'], strict=False)
else:
self.model.load_state_dict(checkpoint, strict=False)
else:
self.model.load_state_dict(checkpoint, strict=False)
print(f" Loaded ViT weights from {path}")
def predict(self, image):
if self.model is None:
self.load_model()
self.model.eval()
if not isinstance(image, Image.Image):
image = Image.fromarray(image)
image = image.convert('RGB')
inputs = self.processor(images=image, return_tensors="pt")
inputs = {k: v.to(DEVICE) for k, v in inputs.items()}
with torch.no_grad():
outputs = self.model(**inputs)
probs = torch.softmax(outputs.logits, dim=-1)
pred = torch.argmax(probs, dim=-1).item()
conf = probs[0, pred].item()
is_receipt = pred == 1
label = "receipt" if is_receipt else "other"
return {
'is_receipt': is_receipt,
'confidence': conf,
'label': label,
'probabilities': probs[0].cpu().numpy().tolist()
}
class ResNetDocumentClassifier:
"""ResNet18-based document classifier."""
def __init__(self, num_labels=2, model_path=None):
self.num_labels = num_labels
self.model = None
self.model_path = model_path or os.path.join(MODELS_DIR, 'resnet18_rvlcdip.pt')
self.use_class_mapping = False
self.transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
def load_model(self):
self.model = models.resnet18(weights=None)
self.model = self.model.to(DEVICE)
self.model.eval()
return self.model
def load_weights(self, path):
if not os.path.exists(path):
return
checkpoint = torch.load(path, map_location=DEVICE)
if isinstance(checkpoint, dict):
state_dict = checkpoint.get('model_state_dict', checkpoint.get('state_dict', checkpoint))
id2label = checkpoint.get('id2label', None)
else:
state_dict = checkpoint
id2label = None
# Determine number of classes from checkpoint
fc_weight_key = 'fc.weight'
if fc_weight_key in state_dict:
num_classes = state_dict[fc_weight_key].shape[0]
else:
num_classes = self.num_labels
# Rebuild final layer if needed
if num_classes != self.model.fc.out_features:
self.model.fc = nn.Linear(self.model.fc.in_features, num_classes)
self.model = self.model.to(DEVICE)
self.model.load_state_dict(state_dict, strict=False)
# Handle 16-class RVL-CDIP models
if num_classes == 16:
self.use_class_mapping = True
self.receipt_class_idx = 11 # Receipt class in RVL-CDIP
print(f" Loaded ResNet weights from {path} ({num_classes} classes)")
def predict(self, image):
if self.model is None:
self.load_model()
self.model.eval()
if not isinstance(image, Image.Image):
image = Image.fromarray(image)
image = image.convert('RGB')
input_tensor = self.transform(image).unsqueeze(0).to(DEVICE)
with torch.no_grad():
outputs = self.model(input_tensor)
probs = torch.softmax(outputs, dim=-1)
if self.use_class_mapping:
receipt_prob = probs[0, self.receipt_class_idx].item()
other_prob = 1.0 - receipt_prob
is_receipt = receipt_prob > 0.5
conf = receipt_prob if is_receipt else other_prob
final_probs = [other_prob, receipt_prob]
else:
pred = torch.argmax(probs, dim=-1).item()
conf = probs[0, pred].item()
is_receipt = pred == 1
final_probs = probs[0].cpu().numpy().tolist()
return {
'is_receipt': is_receipt,
'confidence': conf,
'label': "receipt" if is_receipt else "other",
'probabilities': final_probs
}
class EnsembleDocumentClassifier:
"""Ensemble of ViT and ResNet classifiers."""
def __init__(self, model_configs=None, weights=None):
self.model_configs = model_configs or [
{'name': 'vit_base', 'path': os.path.join(MODELS_DIR, 'rvl_classifier.pt')},
{'name': 'resnet18', 'path': os.path.join(MODELS_DIR, 'resnet18_rvlcdip.pt')},
]
# Filter to existing models
self.model_configs = [cfg for cfg in self.model_configs if os.path.exists(cfg['path'])]
if not self.model_configs:
print("Warning: No model files found, will use default ViT")
self.model_configs = [{'name': 'vit_default', 'path': None}]
self.weights = weights or [1.0 / len(self.model_configs)] * len(self.model_configs)
self.classifiers = []
self.processor = None
def load_models(self):
print(f"Loading ensemble with {len(self.model_configs)} models...")
for cfg in self.model_configs:
is_resnet = 'resnet' in cfg['name'].lower() or 'resnet' in cfg.get('path', '').lower()
if is_resnet:
classifier = ResNetDocumentClassifier(num_labels=2, model_path=cfg['path'])
else:
classifier = DocumentClassifier(num_labels=2, model_path=cfg['path'])
classifier.load_model()
if cfg['path'] and os.path.exists(cfg['path']):
try:
classifier.load_weights(cfg['path'])
except Exception as e:
print(f" Warning: Could not load {cfg['name']}: {e}")
self.classifiers.append(classifier)
if self.processor is None:
if hasattr(classifier, 'processor'):
self.processor = classifier.processor
elif hasattr(classifier, 'transform'):
self.processor = classifier.transform
print(f"Ensemble ready with {len(self.classifiers)} models")
return self
def predict(self, image, return_individual=False):
if not self.classifiers:
self.load_models()
all_probs = []
individual_results = []
for i, classifier in enumerate(self.classifiers):
result = classifier.predict(image)
probs = result.get('probabilities', [0.5, 0.5])
if len(probs) < 2:
probs = [1 - result['confidence'], result['confidence']]
all_probs.append(probs)
individual_results.append({
'name': self.model_configs[i]['name'],
'prediction': result['label'],
'confidence': result['confidence'],
'probabilities': probs
})
# Weighted average
ensemble_probs = np.zeros(2)
for i, probs in enumerate(all_probs):
ensemble_probs += np.array(probs[:2]) * self.weights[i]
pred = np.argmax(ensemble_probs)
is_receipt = pred == 1
conf = ensemble_probs[pred]
result = {
'is_receipt': is_receipt,
'confidence': float(conf),
'label': "receipt" if is_receipt else "other",
'probabilities': ensemble_probs.tolist()
}
if return_individual:
result['individual_results'] = individual_results
return result
# ============================================================================
# OCR
# ============================================================================
class ReceiptOCR:
"""Enhanced OCR with EasyOCR + TrOCR + PaddleOCR + Tesseract ensemble."""
def __init__(self):
self.reader = None
self.trocr_engine = None
self.paddleocr_engine = None
self.use_tesseract = False
# Engine weights for ensemble
self.engine_weights = {
'trocr': 0.40, # Highest weight - best quality
'easyocr': 0.35,
'paddleocr': 0.30,
'tesseract': 0.20
}
# Try to initialize TrOCR
try:
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
self.trocr_processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-printed")
self.trocr_model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-printed")
self.trocr_model = self.trocr_model.to(DEVICE)
self.trocr_model.eval()
self.trocr_available = True
print("TrOCR initialized")
except Exception as e:
self.trocr_available = False
print(f"TrOCR not available: {e}")
# Try to initialize PaddleOCR
try:
from paddleocr import PaddleOCR
self.paddleocr_engine = PaddleOCR(use_angle_cls=True, lang='en', show_log=False)
self.paddleocr_available = True
print("PaddleOCR initialized")
except Exception as e:
self.paddleocr_available = False
print(f"PaddleOCR not available: {e}")
# Try to initialize Tesseract
try:
import pytesseract
self.use_tesseract = True
except ImportError:
self.use_tesseract = False
def load(self):
if self.reader is None:
print("Loading EasyOCR...")
self.reader = easyocr.Reader(['en'], gpu=torch.cuda.is_available())
print("EasyOCR ready")
return self
def _preprocess_image(self, image, method='enhance'):
"""Apply image preprocessing to improve OCR accuracy."""
import cv2
if isinstance(image, Image.Image):
img_array = np.array(image)
else:
img_array = image.copy()
if method == 'enhance':
# Convert to grayscale if needed
if len(img_array.shape) == 3:
gray = cv2.cvtColor(img_array, cv2.COLOR_RGB2GRAY)
else:
gray = img_array
# Apply CLAHE (Contrast Limited Adaptive Histogram Equalization)
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))
enhanced = clahe.apply(gray)
# Denoise
denoised = cv2.fastNlMeansDenoising(enhanced, h=10)
# Convert back to RGB for OCR engines
return cv2.cvtColor(denoised, cv2.COLOR_GRAY2RGB)
elif method == 'sharpen':
# Sharpen the image
kernel = np.array([[-1,-1,-1], [-1,9,-1], [-1,-1,-1]])
if len(img_array.shape) == 3:
sharpened = cv2.filter2D(img_array, -1, kernel)
else:
gray = img_array
sharpened = cv2.filter2D(gray, -1, kernel)
sharpened = cv2.cvtColor(sharpened, cv2.COLOR_GRAY2RGB)
return sharpened
return img_array
def _run_easyocr(self, image):
"""Run EasyOCR."""
if self.reader is None:
self.load()
results = self.reader.readtext(image)
extracted = []
for bbox, text, conf in results:
x_coords = [p[0] for p in bbox]
y_coords = [p[1] for p in bbox]
extracted.append({
'text': text.strip(),
'confidence': conf,
'bbox': [min(x_coords), min(y_coords), max(x_coords), max(y_coords)],
'engine': 'easyocr'
})
return extracted
def _run_trocr(self, image, boxes):
"""Run TrOCR on detected text regions."""
if not self.trocr_available:
return []
if isinstance(image, np.ndarray):
pil_image = Image.fromarray(image).convert('RGB')
else:
pil_image = image.convert('RGB')
results = []
for box in boxes:
try:
if isinstance(box, list) and len(box) >= 4:
# Convert to [x1, y1, x2, y2]
if isinstance(box[0], list):
x1 = int(min(p[0] for p in box))
y1 = int(min(p[1] for p in box))
x2 = int(max(p[0] for p in box))
y2 = int(max(p[1] for p in box))
else:
x1, y1, x2, y2 = [int(b) for b in box[:4]]
# Crop and recognize
cropped = pil_image.crop((x1, y1, x2, y2))
# TrOCR recognition
pixel_values = self.trocr_processor(images=cropped, return_tensors="pt").pixel_values.to(DEVICE)
with torch.no_grad():
generated_ids = self.trocr_model.generate(
pixel_values,
max_length=128,
num_beams=4,
early_stopping=True
)
text = self.trocr_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
if text.strip():
results.append({
'text': text.strip(),
'confidence': 0.9, # TrOCR doesn't provide confidence, use high default
'bbox': [x1, y1, x2, y2],
'engine': 'trocr'
})
except Exception as e:
continue
return results
def _run_paddleocr(self, image):
"""Run PaddleOCR."""
if not self.paddleocr_available:
return []
try:
result = self.paddleocr_engine.ocr(image, cls=True)
if result is None or len(result) == 0 or result[0] is None:
return []
extracted = []
for line in result[0]:
if line is None:
continue
bbox, (text, conf) = line
x_coords = [p[0] for p in bbox]
y_coords = [p[1] for p in bbox]
extracted.append({
'text': text.strip(),
'confidence': conf,
'bbox': [min(x_coords), min(y_coords), max(x_coords), max(y_coords)],
'engine': 'paddleocr'
})
return extracted
except Exception as e:
print(f"PaddleOCR error: {e}")
return []
def _run_tesseract(self, image):
"""Run Tesseract OCR."""
if not self.use_tesseract:
return []
try:
import pytesseract
if isinstance(image, Image.Image):
pil_image = image.convert('RGB')
else:
pil_image = Image.fromarray(image).convert('RGB')
data = pytesseract.image_to_data(pil_image, output_type=pytesseract.Output.DICT)
results = []
n_boxes = len(data['text'])
for i in range(n_boxes):
text = data['text'][i].strip()
conf = int(data['conf'][i])
if text and conf > 0:
x, y, w, h = data['left'][i], data['top'][i], data['width'][i], data['height'][i]
results.append({
'text': text,
'confidence': conf / 100.0,
'bbox': [x, y, x+w, y+h],
'engine': 'tesseract'
})
return results
except Exception as e:
print(f"Tesseract OCR error: {e}")
return []
def _compute_iou(self, box1, box2):
"""Compute Intersection over Union for bounding boxes."""
x1_1, y1_1, x2_1, y2_1 = box1
x1_2, y1_2, x2_2, y2_2 = box2
xi1 = max(x1_1, x1_2)
yi1 = max(y1_1, y1_2)
xi2 = min(x2_1, x2_2)
yi2 = min(y2_1, y2_2)
inter_area = max(0, xi2 - xi1) * max(0, yi2 - yi1)
box1_area = (x2_1 - x1_1) * (y2_1 - y1_1)
box2_area = (x2_2 - x1_2) * (y2_2 - y1_2)
union_area = box1_area + box2_area - inter_area
return inter_area / union_area if union_area > 0 else 0
def _merge_results(self, all_results):
"""Merge results from multiple OCR engines using weighted voting."""
if not all_results:
return []
# Use the engine with most detections as base
base_engine = max(all_results.keys(), key=lambda k: len(all_results[k]))
base_results = all_results[base_engine]
merged = []
for base_result in base_results:
base_box = base_result['bbox']
base_text = base_result['text']
base_conf = base_result['confidence']
# Find matching results from other engines
matches = [(base_text, base_conf, self.engine_weights.get(base_engine, 0.3))]
for engine_name, results in all_results.items():
if engine_name == base_engine:
continue
for result in results:
iou = self._compute_iou(base_box, result['bbox'])
if iou > 0.3: # Same text region
weight = self.engine_weights.get(engine_name, 0.2)
matches.append((result['text'], result['confidence'], weight))
# Vote on the best text
if len(matches) == 1:
final_text = base_text
final_conf = base_conf
else:
# Weighted voting
text_scores = {}
for text, conf, weight in matches:
if text not in text_scores:
text_scores[text] = 0
text_scores[text] += conf * weight
final_text = max(text_scores.keys(), key=lambda t: text_scores[t])
total_weight = sum(w for _, _, w in matches)
final_conf = min(0.99, text_scores[final_text] / total_weight if total_weight > 0 else 0.5)
merged.append({
'text': final_text,
'confidence': final_conf,
'bbox': base_box,
'engines_used': len(matches)
})
return merged
def extract_with_positions(self, image, min_confidence=0.3, use_ensemble=False):
"""Extract text with positions using ensemble of OCR engines."""
if isinstance(image, Image.Image):
img_array = np.array(image)
else:
img_array = image.copy()
all_results = {}
# Run EasyOCR (always available)
try:
easyocr_results = self._run_easyocr(img_array)
if easyocr_results:
all_results['easyocr'] = easyocr_results
except Exception as e:
print(f"EasyOCR error: {e}")
# Run PaddleOCR if available
if self.paddleocr_available and use_ensemble:
try:
paddleocr_results = self._run_paddleocr(img_array)
if paddleocr_results:
all_results['paddleocr'] = paddleocr_results
except Exception as e:
print(f"PaddleOCR error: {e}")
# Run Tesseract if available
if self.use_tesseract and use_ensemble:
try:
tesseract_results = self._run_tesseract(img_array)
if tesseract_results:
all_results['tesseract'] = tesseract_results
except Exception as e:
print(f"Tesseract error: {e}")
# Run TrOCR on detected boxes (needs boxes from other engines)
if self.trocr_available and use_ensemble and all_results:
try:
# Get boxes from best available engine
source_engine = max(all_results.keys(), key=lambda k: len(all_results[k]))
boxes = [r['bbox'] for r in all_results[source_engine]]
trocr_results = self._run_trocr(img_array, boxes)
if trocr_results:
all_results['trocr'] = trocr_results
except Exception as e:
print(f"TrOCR error: {e}")
# Merge results if ensemble, otherwise use EasyOCR only
if use_ensemble and len(all_results) > 1:
merged = self._merge_results(all_results)
elif 'easyocr' in all_results:
merged = all_results['easyocr']
else:
merged = []
# Filter by confidence
filtered = [r for r in merged if r['confidence'] >= min_confidence]
# If results are poor, try with preprocessing
avg_confidence = np.mean([r['confidence'] for r in filtered]) if filtered else 0
if len(filtered) < 3 or avg_confidence < 0.4:
try:
preprocessed = self._preprocess_image(image, method='enhance')
retry_results = self._run_easyocr(preprocessed)
retry_filtered = [r for r in retry_results if r['confidence'] >= min_confidence]
retry_avg = np.mean([r['confidence'] for r in retry_filtered]) if retry_filtered else 0
if retry_avg > avg_confidence:
filtered = retry_filtered
except Exception:
pass
# Sort by confidence (highest first)
filtered.sort(key=lambda x: x['confidence'], reverse=True)
return filtered
def postprocess_receipt(self, ocr_results):
"""Extract structured fields from OCR results with improved patterns."""
# Fix common OCR errors (S->$ in amounts)
fixed_results = []
for r in ocr_results:
fixed_r = r.copy()
fixed_r['text'] = self._fix_ocr_text(r['text'])
fixed_results.append(fixed_r)
full_text = ' '.join([r['text'] for r in fixed_results])
fields = {
'vendor': self._extract_vendor(ocr_results),
'date': self._extract_date(full_text),
'total': self._extract_total(full_text),
'time': self._extract_time(full_text)
}
return fields
def _extract_vendor(self, ocr_results):
"""Extract vendor name - look for business name in top portion of receipt."""
if not ocr_results:
return None
# Sort by vertical position (top of receipt first)
sorted_results = sorted(ocr_results, key=lambda x: x['bbox'][1] if isinstance(x['bbox'], list) and len(x['bbox']) > 1 else 0)
# Look in top 10 results for vendor name
top_results = sorted_results[:10]
# Skip words that are clearly not vendor names
skip_words = {'TOTAL', 'DATE', 'TIME', 'RECEIPT', 'THANK', 'YOU', 'STORE', 'HOST',
'ORDER', 'TYPE', 'TOGO', 'DINE', 'IN', 'CHECK', 'CLOSED', 'AMEX',
'VISA', 'MASTERCARD', 'CASH', 'CHANGE', 'SUBTOTAL', 'TAX'}
# Known vendor patterns (common stores)
known_vendors = ['EINSTEIN', 'STARBUCKS', 'MCDONALDS', 'WALMART', 'TARGET',
'CHIPOTLE', 'PANERA', 'DUNKIN', 'SUBWAY', 'CHICK-FIL-A']
# First, check if any known vendor is in the OCR results
for result in top_results:
text = result['text'].strip().upper()
for vendor in known_vendors:
if vendor in text:
return result['text'].strip()
# Look for longest meaningful text (likely the business name)
candidates = []
for result in top_results:
text = result['text'].strip()
text_upper = text.upper()
# Skip short texts, numbers, and common skip words
if len(text) < 3:
continue
if text_upper in skip_words:
continue
if re.match(r'^[\d\s\-\/\.\$\,]+$', text): # Skip pure numbers/symbols
continue
if re.match(r'^#?\d+$', text): # Skip store numbers like #2846
continue
# Prefer texts with letters and reasonable length
if len(text) >= 4 and any(c.isalpha() for c in text):
candidates.append((text, len(text), result['confidence']))
# Return the longest candidate with good confidence
if candidates:
# Sort by length (longer = more likely to be full vendor name)
candidates.sort(key=lambda x: (x[1], x[2]), reverse=True)
return candidates[0][0]
return None
def _extract_date(self, text):
"""Extract date with improved patterns."""
patterns = [
r'\b\d{1,2}[/-]\d{1,2}[/-]\d{2,4}\b', # MM/DD/YYYY or MM-DD-YYYY
r'\b\d{4}[/-]\d{2}[/-]\d{2}\b', # YYYY-MM-DD
r'\b(?:Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec)[a-z]*\s+\d{1,2},?\s+\d{4}\b', # Month DD, YYYY
]
for pattern in patterns:
matches = re.findall(pattern, text, re.IGNORECASE)
if matches:
return matches[0]
return None
def _extract_total(self, text):
"""Extract total amount - handles S/$ OCR confusion."""
# Fix S -> $ in amounts (common OCR error)
fixed_text = re.sub(r'\bS(\d{1,3}(?:,\d{3})*(?:\.\d{2})?)\b', r'$\1', text)
# Find all dollar amounts (now with fixed $ symbols)
all_amounts = re.findall(r'[\$S](\d{1,3}(?:,\d{3})*(?:\.\d{2})?)', fixed_text)
all_amounts = [float(a.replace(',', '')) for a in all_amounts if a]
if not all_amounts:
# Try finding any decimal amounts
all_amounts = re.findall(r'(\d{1,3}(?:,\d{3})*\.\d{2})', fixed_text)
all_amounts = [float(a.replace(',', '')) for a in all_amounts if a]
if not all_amounts:
return None
# Look for "TOTAL", "AMOUNT DUE", "BALANCE" keywords and find amount near them
lines = fixed_text.split('\n')
for i, line in enumerate(lines):
line_upper = line.upper()
if any(keyword in line_upper for keyword in ['TOTAL', 'AMOUNT DUE', 'BALANCE DUE', 'DUE']):
# Check this line and next 2 lines for amount
search_text = ' '.join(lines[i:min(i+3, len(lines))])
# Match both $ and S followed by amounts
matches = re.findall(r'[\$S](\d{1,3}(?:,\d{3})*(?:\.\d{2})?)', search_text)
if matches:
amounts_near_total = [float(m.replace(',', '')) for m in matches]
return f"{max(amounts_near_total):.2f}"
# Fallback: return largest amount overall
return f"{max(all_amounts):.2f}"
def _extract_time(self, text):
"""Extract time."""
patterns = [
r'\b(\d{1,2}):(\d{2})\s*(?:AM|PM)\b',
r'\b(\d{1,2}):(\d{2})\b',
]
for pattern in patterns:
match = re.search(pattern, text, re.IGNORECASE)
if match:
return match.group(0)
return None
def _fix_ocr_text(self, text):
"""Fix common OCR errors like S->$ in amounts."""
# Fix S followed by digits -> $ (e.g., S154.06 -> $154.06)
text = re.sub(r'\bS(\d{1,3}(?:,\d{3})*(?:\.\d{2})?)\b', r'$\1', text)
# Fix Subtolal -> Subtotal (common OCR error)
text = re.sub(r'\bSubtolal\b', 'Subtotal', text, flags=re.IGNORECASE)
return text
class LayoutLMFieldExtractor:
"""LayoutLMv3-based field extractor using fine-tuned weights if available."""
def __init__(self, model_path=None):
self.model_path = model_path or os.path.join(MODELS_DIR, 'layoutlm_extractor.pt')
self.id2label = {
0: 'O',
1: 'B-VENDOR', 2: 'I-VENDOR',
3: 'B-DATE', 4: 'I-DATE',
5: 'B-TOTAL', 6: 'I-TOTAL',
7: 'B-TIME', 8: 'I-TIME'
}
self.label2id = {v: k for k, v in self.id2label.items()}
self.processor = None
self.model = None
def load(self):
print("Loading LayoutLMv3 extractor...")
self.processor = LayoutLMv3Processor.from_pretrained("microsoft/layoutlmv3-base")
self.model = LayoutLMv3ForTokenClassification.from_pretrained(
"microsoft/layoutlmv3-base",
num_labels=len(self.id2label),
id2label=self.id2label,
label2id=self.label2id,
)
if os.path.exists(self.model_path):
checkpoint = torch.load(self.model_path, map_location=DEVICE)
if isinstance(checkpoint, dict) and 'model_state_dict' in checkpoint:
checkpoint = checkpoint['model_state_dict']
if isinstance(checkpoint, dict):
missing, unexpected = self.model.load_state_dict(checkpoint, strict=False)
print(f"Loaded LayoutLM weights; missing={len(missing)}, unexpected={len(unexpected)}")
self.model = self.model.to(DEVICE)
self.model.eval()
print("LayoutLMv3 ready")
return self
def _prepare_boxes(self, ocr_results, image_size):
"""Convert absolute pixel boxes to LayoutLM 0-1000 format."""
width, height = image_size
boxes = []
words = []
for r in ocr_results:
bbox = r.get("bbox", [0, 0, width, height])
x0, y0, x1, y1 = bbox
boxes.append([
int(1000 * x0 / width),
int(1000 * y0 / height),
int(1000 * x1 / width),
int(1000 * y1 / height),
])
words.append(r.get("text", ""))
return words, boxes
def predict_fields(self, image, ocr_results=None):
"""Predict fields with confidence scores and improved total extraction."""
if self.model is None:
self.load()
if not isinstance(image, Image.Image):
image = Image.fromarray(image)
image = image.convert("RGB")
if ocr_results:
words, boxes = self._prepare_boxes(ocr_results, image.size)
encoding = self.processor(
image,
words=words,
boxes=boxes,
return_tensors="pt",
truncation=True,
padding="max_length",
max_length=512,
)
else:
encoding = self.processor(image, return_tensors="pt")
encoding = {k: v.to(DEVICE) for k, v in encoding.items()}
with torch.no_grad():
outputs = self.model(**encoding)
logits = outputs.logits[0]
# Get softmax probabilities for confidence
probs = torch.softmax(logits, dim=-1)
preds = logits.argmax(-1).cpu().tolist()
probs_np = probs.cpu().numpy()
tokens = self.processor.tokenizer.convert_ids_to_tokens(encoding["input_ids"][0].cpu())
# Extract entities with confidence scores
entities = {"VENDOR": [], "DATE": [], "TOTAL": [], "TIME": []}
entity_confidences = {"VENDOR": [], "DATE": [], "TOTAL": [], "TIME": []}
entity_positions = {"VENDOR": [], "DATE": [], "TOTAL": [], "TIME": []}
current = {"label": None, "tokens": [], "start_idx": None}
for idx, (token, pred) in enumerate(zip(tokens, preds)):
label = self.id2label.get(pred, "O")
conf = float(probs_np[idx, pred])
if token in ["[PAD]", "[CLS]", "[SEP]"]:
continue
if label.startswith("B-"):
# Flush previous
if current["label"] and current["tokens"]:
entity_text = " ".join(current["tokens"]).replace("▁", " ").strip()
entities[current["label"]].append(entity_text)
entity_confidences[current["label"]].append(conf)
entity_positions[current["label"]].append(current["start_idx"])
current = {"label": label[2:], "tokens": [token], "start_idx": idx}
elif label.startswith("I-") and current["label"] == label[2:]:
current["tokens"].append(token)
else:
if current["label"] and current["tokens"]:
entity_text = " ".join(current["tokens"]).replace("▁", " ").strip()
entities[current["label"]].append(entity_text)
entity_confidences[current["label"]].append(conf)
entity_positions[current["label"]].append(current["start_idx"])
current = {"label": None, "tokens": [], "start_idx": None}
if current["label"] and current["tokens"]:
entity_text = " ".join(current["tokens"]).replace("▁", " ").strip()
entities[current["label"]].append(entity_text)
entity_confidences[current["label"]].append(conf)
entity_positions[current["label"]].append(current["start_idx"])
# Smart field selection with confidence and position awareness
result = {}
# Vendor: prefer first high-confidence result
if entities["VENDOR"]:
best_vendor_idx = max(range(len(entities["VENDOR"])),
key=lambda i: entity_confidences["VENDOR"][i])
if entity_confidences["VENDOR"][best_vendor_idx] > 0.3:
result["vendor"] = entities["VENDOR"][best_vendor_idx]
# Date: prefer first high-confidence result
if entities["DATE"]:
best_date_idx = max(range(len(entities["DATE"])),
key=lambda i: entity_confidences["DATE"][i])
if entity_confidences["DATE"][best_date_idx] > 0.3:
result["date"] = entities["DATE"][best_date_idx]
# Time: prefer first high-confidence result
if entities["TIME"]:
best_time_idx = max(range(len(entities["TIME"])),
key=lambda i: entity_confidences["TIME"][i])
if entity_confidences["TIME"][best_time_idx] > 0.3:
result["time"] = entities["TIME"][best_time_idx]
# Total: improved extraction - look for amounts near "TOTAL" keyword in OCR
if entities["TOTAL"]:
# Get all total candidates with confidence
total_candidates = [(entities["TOTAL"][i], entity_confidences["TOTAL"][i],
entity_positions["TOTAL"][i])
for i in range(len(entities["TOTAL"]))]
# If OCR results available, validate against OCR text
if ocr_results:
ocr_text = ' '.join([r['text'] for r in ocr_results]).upper()
ocr_lines = [r['text'] for r in ocr_results]
# Find amounts near "TOTAL" keyword
best_total = None
best_conf = 0
for total_val, conf, pos in total_candidates:
# Clean the total value
total_clean = str(total_val).replace('$', '').replace(',', '').replace('.', '').strip()
# Check if this total appears near "TOTAL" keyword in OCR
for i, line in enumerate(ocr_lines):
line_upper = line.upper()
if 'TOTAL' in line_upper or 'AMOUNT DUE' in line_upper:
# Check this line and next 2 lines for the amount
search_text = ' '.join(ocr_lines[i:min(i+3, len(ocr_lines))])
search_clean = search_text.replace('$', '').replace(',', '').replace('.', '')
if total_clean in search_clean:
# Found near TOTAL keyword - high confidence
if conf > best_conf:
best_total = total_val
best_conf = conf
break
if best_total:
result["total"] = best_total
else:
# Fallback: use highest confidence total
best_idx = max(range(len(total_candidates)), key=lambda i: total_candidates[i][1])
if total_candidates[best_idx][1] > 0.3:
result["total"] = total_candidates[best_idx][0]
else:
# No OCR, use highest confidence
best_idx = max(range(len(total_candidates)), key=lambda i: total_candidates[i][1])
if total_candidates[best_idx][1] > 0.3:
result["total"] = total_candidates[best_idx][0]
return result
# ============================================================================
# Anomaly Detection
# ============================================================================
class AnomalyDetector:
"""Isolation Forest-based anomaly detection."""
def __init__(self):
self.model = IsolationForest(contamination=0.1, random_state=42)
self.is_fitted = False
def extract_features(self, fields):
"""Extract features from receipt fields."""
total = 0
try:
total = float(fields.get('total', 0) or 0)
except:
pass
vendor = fields.get('vendor', '') or ''
date = fields.get('date', '') or ''
features = [
total,
np.log1p(total),
len(vendor),
1 if date else 0,
1, # num_items placeholder
12, # hour placeholder
total, # amount_per_item placeholder
0 # is_weekend placeholder
]
return np.array(features).reshape(1, -1)
def predict(self, fields):
features = self.extract_features(fields)
# Simple rule-based detection if model not fitted
reasons = []
total = float(fields.get('total', 0) or 0)
if total > 1000:
reasons.append(f"High amount: ${total:.2f}")
if not fields.get('vendor'):
reasons.append("Missing vendor")
if not fields.get('date'):
reasons.append("Missing date")
is_anomaly = len(reasons) > 0
return {
'is_anomaly': is_anomaly,
'score': -0.5 if is_anomaly else 0.5,
'prediction': 'ANOMALY' if is_anomaly else 'NORMAL',
'reasons': reasons
}
# ============================================================================
# Initialize Models
# ============================================================================
print("\n" + "="*50)
print("Initializing models...")
print("="*50)
# Check for model files
model_files = []
if os.path.exists(MODELS_DIR):
model_files = [f for f in os.listdir(MODELS_DIR) if f.endswith('.pt')]
print(f"Found model files: {model_files}")
else:
print(f"Models directory not found: {MODELS_DIR}")
os.makedirs(MODELS_DIR, exist_ok=True)
# Initialize components
try:
ensemble_classifier = EnsembleDocumentClassifier()
ensemble_classifier.load_models()
except Exception as e:
print(f"Warning: Could not load ensemble classifier: {e}")
ensemble_classifier = None
try:
receipt_ocr = ReceiptOCR()
receipt_ocr.load()
except Exception as e:
print(f"Warning: Could not load OCR: {e}")
receipt_ocr = None
try:
layoutlm_extractor = LayoutLMFieldExtractor()
layoutlm_extractor.load()
except Exception as e:
print(f"Warning: Could not load LayoutLMv3 extractor: {e}")
layoutlm_extractor = None
anomaly_detector = AnomalyDetector()
print("\n" + "="*50)
print("Initialization complete!")
print("="*50 + "\n")
# ============================================================================
# Helper Functions
# ============================================================================
def draw_ocr_boxes(image, ocr_results):
"""Draw bounding boxes on image."""
img_copy = image.copy()
draw = ImageDraw.Draw(img_copy)
for r in ocr_results:
conf = r.get('confidence', 0.5)
bbox = r.get('bbox', [])
if conf > 0.8:
color = '#28a745' # Green
elif conf > 0.5:
color = '#ffc107' # Yellow
else:
color = '#dc3545' # Red
if len(bbox) >= 4:
draw.rectangle([bbox[0], bbox[1], bbox[2], bbox[3]], outline=color, width=2)
return img_copy
def process_receipt(image):
"""Main processing function for Gradio."""
if image is None:
return (
"<div style='padding: 20px; text-align: center;'>Upload an image to begin</div>",
None, "", "", "<div style='padding: 40px; text-align: center; color: #6c757d;'>Upload an image to begin</div>"
)
if not isinstance(image, Image.Image):
image = Image.fromarray(image)
image = image.convert('RGB')
results = {}
# 1. Classification
classifier_html = ""
try:
if ensemble_classifier:
class_result = ensemble_classifier.predict(image, return_individual=True)
else:
class_result = {'is_receipt': True, 'confidence': 0.5, 'label': 'unknown'}
conf = class_result['confidence']
label = class_result['label'].upper()
color = '#28a745' if class_result.get('is_receipt') else '#dc3545'
bar_color = '#28a745' if conf > 0.8 else '#ffc107' if conf > 0.6 else '#dc3545'
classifier_html = f"""
<div style="padding: 16px; background: #111827; color: #e5e7eb; border-radius: 12px; margin: 8px 0; border: 1px solid #1f2937;">
<h4 style="margin: 0 0 8px 0; color: #e5e7eb;">Classification</h4>
<div style="font-size: 20px; font-weight: bold; color: {color};">{label}</div>
<div style="margin-top: 8px; color: #e5e7eb;">
<span>Confidence: </span>
<div style="display: inline-block; width: 120px; height: 8px; background: #1f2937; border-radius: 4px;">
<div style="width: {conf*100}%; height: 100%; background: {bar_color}; border-radius: 4px;"></div>
</div>
<span style="margin-left: 8px;">{conf:.1%}</span>
</div>
</div>
"""
results['classification'] = class_result
except Exception as e:
classifier_html = f"<div style='color: red;'>Classification error: {e}</div>"
# 2. OCR
ocr_text = ""
ocr_image = None
ocr_results = []
try:
if receipt_ocr:
# Try fast OCR first (EasyOCR + Tesseract only)
ocr_results = receipt_ocr.extract_with_positions(image, use_ensemble=False)
# If confidence is low, try full ensemble
if ocr_results:
avg_conf = np.mean([r['confidence'] for r in ocr_results])
if avg_conf < 0.5 or len(ocr_results) < 5:
# Low confidence or few results, try full ensemble
ocr_results = receipt_ocr.extract_with_positions(image, use_ensemble=True)
ocr_image = draw_ocr_boxes(image, ocr_results)
lines = [f"{i+1}. [{r['confidence']:.0%}] {r['text']}" for i, r in enumerate(ocr_results)]
ocr_text = f"Detected {len(ocr_results)} text regions:\n\n" + "\n".join(lines)
results['ocr'] = ocr_results
except Exception as e:
ocr_text = f"OCR error: {e}"
# 3. Field Extraction (OCR-first, LayoutLM as fallback)
fields = {}
fields_html = ""
try:
# Try OCR regex first (faster and often more accurate for totals)
ocr_fields = {}
if receipt_ocr and ocr_results:
ocr_fields = receipt_ocr.postprocess_receipt(ocr_results)
fields = ocr_fields.copy()
# Use LayoutLM only to fill in missing fields or validate
if layoutlm_extractor and ocr_results:
layoutlm_fields = layoutlm_extractor.predict_fields(image, ocr_results)
# For each field, merge intelligently
for field_name in ['vendor', 'date', 'total', 'time']:
ocr_val = ocr_fields.get(field_name)
layoutlm_val = layoutlm_fields.get(field_name)
if not ocr_val and layoutlm_val:
# OCR didn't find it, use LayoutLM
fields[field_name] = layoutlm_val
elif ocr_val and not layoutlm_val:
# LayoutLM didn't find it, but OCR did - use OCR (especially for total)
if field_name == 'total':
fields[field_name] = ocr_val
else:
# For other fields, prefer OCR if LayoutLM missed it
fields[field_name] = ocr_val
elif ocr_val and layoutlm_val and field_name == 'total':
# For total: validate LayoutLM against OCR text
ocr_text = ' '.join([r['text'] for r in ocr_results])
layoutlm_clean = str(layoutlm_val).replace('$', '').replace('.', '').replace(',', '').strip()
ocr_clean = ocr_text.replace('$', '').replace('.', '').replace(',', '')
# Check if LayoutLM total appears in OCR text
if layoutlm_clean in ocr_clean:
# LayoutLM matches OCR, use it (might be more accurate)
fields['total'] = layoutlm_val
else:
# LayoutLM doesn't match OCR, trust OCR (more reliable)
fields['total'] = ocr_val
elif ocr_val and not layoutlm_val and field_name == 'total':
# LayoutLM didn't find total, but OCR did - use OCR
fields['total'] = ocr_val
elif ocr_val and layoutlm_val and field_name != 'total':
# For other fields, prefer LayoutLM if it's longer/more complete
if len(str(layoutlm_val)) > len(str(ocr_val)):
fields[field_name] = layoutlm_val
else:
fields[field_name] = ocr_val
fields_html = "<div style='padding: 16px; background: #111827; color: #e5e7eb; border-radius: 12px; border: 1px solid #1f2937;'><h4 style=\"color: #e5e7eb;\">Extracted Fields</h4>"
for name, value in [
('Vendor', fields.get('vendor')),
('Date', fields.get('date')),
('Total', f"${fields.get('total')}" if fields.get('total') else None),
]:
display = value or '<span style="color: #9ca3af;">Not found</span>'
fields_html += f"<div style='padding: 8px; background: #0f172a; color: #e5e7eb; border: 1px solid #1f2937; border-radius: 6px; margin: 4px 0;'><b>{name}:</b> {display}</div>"
fields_html += "</div>"
results['fields'] = fields
except Exception as e:
fields_html = f"<div style='color: red;'>Extraction error: {e}</div>"
# 4. Anomaly Detection
anomaly_html = ""
try:
anomaly_result = anomaly_detector.predict(fields)
status_color = '#dc3545' if anomaly_result['is_anomaly'] else '#28a745'
status_text = anomaly_result['prediction']
anomaly_html = f"""
<div style="padding: 16px; background: #111827; color: #e5e7eb; border-radius: 12px; margin: 8px 0; border: 1px solid #1f2937;">
<h4 style="margin: 0 0 8px 0; color: #e5e7eb;">Anomaly Detection</h4>
<div style="font-size: 18px; font-weight: bold; color: {status_color};">{status_text}</div>
"""
if anomaly_result['reasons']:
anomaly_html += "<ul style='margin: 8px 0; padding-left: 20px;'>"
for reason in anomaly_result['reasons']:
anomaly_html += f"<li>{reason}</li>"
anomaly_html += "</ul>"
anomaly_html += "</div>"
results['anomaly'] = anomaly_result
except Exception as e:
anomaly_html = f"<div style='color: red;'>Anomaly detection error: {e}</div>"
# 5. Final Decision
is_receipt = results.get('classification', {}).get('is_receipt', True)
is_anomaly = results.get('anomaly', {}).get('is_anomaly', False)
conf = results.get('classification', {}).get('confidence', 0.5)
if not is_receipt:
decision = "REJECT"
decision_color = "#dc3545"
reason = "Not a receipt"
elif is_anomaly:
decision = "REVIEW"
decision_color = "#ffc107"
reason = "Anomaly detected"
elif conf < 0.7:
decision = "REVIEW"
decision_color = "#ffc107"
reason = "Low confidence"
else:
decision = "APPROVE"
decision_color = "#28a745"
reason = "All checks passed"
summary_html = f"""
<div style="padding: 24px; background: linear-gradient(135deg, {decision_color}22, {decision_color}11);
border-left: 4px solid {decision_color}; border-radius: 12px; text-align: center;">
<div style="font-size: 32px; font-weight: bold; color: {decision_color};">{decision}</div>
<div style="color: #6c757d; margin-top: 8px;">{reason}</div>
</div>
{classifier_html}
{anomaly_html}
{fields_html}
"""
safe_results = json.dumps(to_jsonable(results), indent=2)
return summary_html, ocr_image, ocr_text, safe_results, summary_html
# ============================================================================
# Gradio Interface
# ============================================================================
CUSTOM_CSS = """
.gradio-container { max-width: 1200px !important; background: #0b0c0e; color: #e5e7eb; }
.main-header { text-align: center; padding: 20px; background: linear-gradient(135deg, #0f172a 0%, #1f2937 100%);
border-radius: 12px; color: #e5e7eb; margin-bottom: 20px; border: 1px solid #1f2937; }
.gr-button { border-radius: 10px; background: #111827; color: #e5e7eb; border: 1px solid #1f2937; }
.gr-button-primary { background: #111827; border: 1px solid #22c55e; color: #e5e7eb; }
.gr-box { border: 1px solid #1f2937; background: #111827; color: #e5e7eb; }
.gradio-accordion { border: 1px solid #1f2937 !important; background: #0f172a !important; color: #e5e7eb !important; }
.gr-markdown { color: #e5e7eb; }
.gr-textbox textarea { background: #0f172a !important; color: #e5e7eb !important; border: 1px solid #1f2937 !important; }
.gr-radio { color: #e5e7eb !important; }
"""
with gr.Blocks(title="Receipt Processing Agent", theme=gr.themes.Soft(), css=CUSTOM_CSS) as demo:
gr.Markdown("""
<div class="main-header">
<h1>Receipt Processing Agent</h1>
<p>Ensemble classification, OCR, field extraction, and anomaly detection</p>
<p style="margin-top: 12px; font-size: 14px; color: #9ca3af;">Built by Emily, John, Luke, Michael and Raghu</p>
<p style="margin-top: 8px; font-size: 14px;">
<a href="https://github.com/RogueTex/StreamingDataforModelTraining#readme" target="_blank" style="color: #22c55e; text-decoration: none; border-bottom: 1px solid #22c55e;">Read more here →</a>
</p>
</div>
""")
gr.Markdown("""
### How It Works
Upload a receipt image to automatically:
- **Classify** document type with ViT + ResNet ensemble
- **Extract text** with EasyOCR (with bounding boxes)
- **Extract fields** (vendor, date, total) using regex patterns
- **Detect anomalies** with rule-based checks
- **Route** to APPROVE / REVIEW / REJECT
---
""")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Upload Receipt")
input_image = gr.Image(type="pil", label="Receipt Image", height=350)
process_btn = gr.Button("Process Receipt", variant="primary", size="lg")
with gr.Column(scale=1):
agent_summary = gr.HTML(
label="Results",
value="<div style='padding: 40px; text-align: center; color: #6c757d;'>Upload an image to begin</div>"
)
with gr.Accordion("OCR Results", open=False):
with gr.Row():
ocr_image_output = gr.Image(label="Detected Text Regions", height=300)
ocr_text_output = gr.Textbox(label="Extracted Text", lines=12)
with gr.Accordion("Raw Results (JSON)", open=False):
results_json = gr.Textbox(label="Full Results", lines=15)
# Per-section feedback controls
with gr.Accordion("Classification Feedback", open=False):
cls_assess = gr.Radio(choices=["Correct", "Incorrect"], label="Classification correct?", value=None)
cls_notes = gr.Textbox(label="Notes (optional)", placeholder="What should be improved or fixed?", lines=2)
cls_status = gr.Markdown(value="")
cls_submit = gr.Button("Submit Classification Feedback", variant="primary")
cls_submit.click(
fn=save_feedback,
inputs=[cls_assess, cls_notes, results_json, gr.State("classification")],
outputs=cls_status
)
with gr.Accordion("OCR Feedback", open=False):
ocr_assess = gr.Radio(choices=["Correct", "Incorrect"], label="OCR correct?", value=None)
ocr_notes = gr.Textbox(label="Notes (optional)", placeholder="What should be improved or fixed?", lines=2)
ocr_status = gr.Markdown(value="")
ocr_submit = gr.Button("Submit OCR Feedback", variant="primary")
ocr_submit.click(
fn=save_feedback,
inputs=[ocr_assess, ocr_notes, results_json, gr.State("ocr")],
outputs=ocr_status
)
with gr.Accordion("Field Extraction Feedback", open=False):
fld_assess = gr.Radio(choices=["Correct", "Incorrect"], label="Fields correct?", value=None)
fld_notes = gr.Textbox(label="Notes (optional)", placeholder="What should be improved or fixed?", lines=2)
fld_status = gr.Markdown(value="")
fld_submit = gr.Button("Submit Fields Feedback", variant="primary")
fld_submit.click(
fn=save_feedback,
inputs=[fld_assess, fld_notes, results_json, gr.State("fields")],
outputs=fld_status
)
with gr.Accordion("Anomaly Feedback", open=False):
an_assess = gr.Radio(choices=["Correct", "Incorrect"], label="Anomaly correct?", value=None)
an_notes = gr.Textbox(label="Notes (optional)", placeholder="What should be improved or fixed?", lines=2)
an_status = gr.Markdown(value="")
an_submit = gr.Button("Submit Anomaly Feedback", variant="primary")
an_submit.click(
fn=save_feedback,
inputs=[an_assess, an_notes, results_json, gr.State("anomaly")],
outputs=an_status
)
with gr.Accordion("Feedback", open=True):
gr.Markdown("Review the agent output below and submit a quick assessment.")
feedback_summary = gr.HTML(label="Last Agent Response (read-only)")
with gr.Row():
feedback_assessment = gr.Radio(
choices=["Correct", "Incorrect"],
label="Is the response correct?",
value=None
)
feedback_notes = gr.Textbox(
label="Notes (optional)",
placeholder="What should be improved or fixed?",
lines=3
)
feedback_status = gr.Markdown(value="")
submit_feedback = gr.Button("Submit Feedback", variant="primary")
submit_feedback.click(
fn=save_feedback,
inputs=[feedback_assessment, feedback_notes, results_json, gr.State("overall")],
outputs=feedback_status
)
process_btn.click(
fn=process_receipt,
inputs=[input_image],
outputs=[agent_summary, ocr_image_output, ocr_text_output, results_json, feedback_summary]
)
# Launch (Spaces needs share=True when localhost is blocked)
if __name__ == "__main__":
demo.queue(max_size=8).launch(
share=True,
server_name="0.0.0.0",
server_port=7860,
show_error=True,
# keep API enabled; json_schema traversal is guarded by the gradio_client
# monkeypatch above (_safe_get_type / _safe_json_schema_to_python_type)
show_api=True,
)
|