simpleRAG / app.py
RohanSardar's picture
Update app.py
bd4c69d verified
import os
import streamlit as st
from dotenv import load_dotenv
from langchain_groq import ChatGroq
from langchain_community.vectorstores import FAISS
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain_core.prompts import ChatPromptTemplate
from langchain.chains import create_retrieval_chain
from langchain_community.document_loaders import PyPDFDirectoryLoader
load_dotenv()
groq_api_key = os.getenv('GROQ_API_KEY')
model = ChatGroq(groq_api_key=groq_api_key, model='Llama3-8b-8192')
prompt = ChatPromptTemplate.from_template(
"""
Answer the questions based on the context only.
Provide the answer accurately and briefly to the question
<context>
{context}
<context>
Question:{input}
"""
)
st.set_page_config(page_title = 'Simple RAG', page_icon = '⛓️', initial_sidebar_state = 'collapsed')
st.sidebar.header('About')
st.sidebar.markdown(
"""
Embeddings: Craig/paraphrase-MiniLM-L6-v2
VectorDB: FAISS
LLM: Llama3-8b-8192
"""
)
st.title('Simple RAG Application')
st.warning('This is a simple RAG demonstration application. It uses open-source models for embeddings and \
inference. So it can be slow and ineffecient.', icon='⚠️')
def create_vector_embedding():
if 'vectors' not in st.session_state:
st.session_state.embeddings = HuggingFaceEmbeddings(model_name='Craig/paraphrase-MiniLM-L6-v2')
st.session_state.loader = PyPDFDirectoryLoader('documents')
st.session_state.docs = st.session_state.loader.load()
st.session_state.text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
st.session_state.final_documents = st.session_state.text_splitter.split_documents(st.session_state.docs[:50])
st.session_state.vectors = FAISS.from_documents(st.session_state.final_documents, st.session_state.embeddings)
st.rerun()
if 'vectors' not in st.session_state:
st.write('The vector store database is not yet ready')
if st.button('Create'):
with st.spinner('Working...'):
create_vector_embedding()
if 'vectors' in st.session_state:
user_prompt = st.text_input('Enter your query here')
if user_prompt:
document_chain = create_stuff_documents_chain(model, prompt)
retriever = st.session_state.vectors.as_retriever()
retrieval_chain = create_retrieval_chain(retriever, document_chain)
response = retrieval_chain.invoke({'input': user_prompt})
st.write(response['answer'])
with st.expander('Context'):
for i, doc in enumerate(response['context']):
st.write(doc.page_content)
st.write('\n\n')