Spaces:
Sleeping
Sleeping
import os | |
import streamlit as st | |
from dotenv import load_dotenv | |
from langchain_groq import ChatGroq | |
from langchain_community.vectorstores import FAISS | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.chains.combine_documents import create_stuff_documents_chain | |
from langchain_core.prompts import ChatPromptTemplate | |
from langchain.chains import create_retrieval_chain | |
from langchain_community.document_loaders import PyPDFDirectoryLoader | |
load_dotenv() | |
groq_api_key = os.getenv('GROQ_API_KEY') | |
model = ChatGroq(groq_api_key=groq_api_key, model='Llama3-8b-8192') | |
prompt = ChatPromptTemplate.from_template( | |
""" | |
Answer the questions based on the context only. | |
Provide the answer accurately and briefly to the question | |
<context> | |
{context} | |
<context> | |
Question:{input} | |
""" | |
) | |
st.set_page_config(page_title = 'Simple RAG', page_icon = '⛓️', initial_sidebar_state = 'collapsed') | |
st.sidebar.header('About') | |
st.sidebar.markdown( | |
""" | |
Embeddings: Craig/paraphrase-MiniLM-L6-v2 | |
VectorDB: FAISS | |
LLM: Llama3-8b-8192 | |
""" | |
) | |
st.title('Simple RAG Application') | |
st.warning('This is a simple RAG demonstration application. It uses open-source models for embeddings and \ | |
inference. So it can be slow and ineffecient.', icon='⚠️') | |
def create_vector_embedding(): | |
if 'vectors' not in st.session_state: | |
st.session_state.embeddings = HuggingFaceEmbeddings(model_name='Craig/paraphrase-MiniLM-L6-v2') | |
st.session_state.loader = PyPDFDirectoryLoader('documents') | |
st.session_state.docs = st.session_state.loader.load() | |
st.session_state.text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) | |
st.session_state.final_documents = st.session_state.text_splitter.split_documents(st.session_state.docs[:50]) | |
st.session_state.vectors = FAISS.from_documents(st.session_state.final_documents, st.session_state.embeddings) | |
st.rerun() | |
if 'vectors' not in st.session_state: | |
st.write('The vector store database is not yet ready') | |
if st.button('Create'): | |
with st.spinner('Working...'): | |
create_vector_embedding() | |
if 'vectors' in st.session_state: | |
user_prompt = st.text_input('Enter your query here') | |
if user_prompt: | |
document_chain = create_stuff_documents_chain(model, prompt) | |
retriever = st.session_state.vectors.as_retriever() | |
retrieval_chain = create_retrieval_chain(retriever, document_chain) | |
response = retrieval_chain.invoke({'input': user_prompt}) | |
st.write(response['answer']) | |
with st.expander('Context'): | |
for i, doc in enumerate(response['context']): | |
st.write(doc.page_content) | |
st.write('\n\n') |