|
from transformers import PretrainedConfig |
|
|
|
class CustomTransformerConfig(PretrainedConfig): |
|
def __init__( |
|
self, |
|
vocab_size=128256, |
|
hidden_size=4096, |
|
num_layers=32, |
|
num_heads=32, |
|
prediction_chunk=256, |
|
dropout=0, |
|
max_position_embeddings=4096, |
|
masking_type="bidirectional", |
|
**kwargs |
|
): |
|
super().__init__(**kwargs) |
|
self.vocab_size = vocab_size |
|
self.hidden_size = hidden_size |
|
self.num_layers = num_layers |
|
self.num_heads = num_heads |
|
self.dropout = dropout |
|
self.prediction_chunk = prediction_chunk |
|
self.max_position_embeddings = max_position_embeddings |
|
self.input_size = prediction_chunk |
|
self.masking_type = masking_type |
|
|