|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torch.amp import autocast |
|
from transformers import PreTrainedModel |
|
from model_config import CustomTransformerConfig |
|
|
|
class CustomTransformerModel(PreTrainedModel): |
|
config_class = CustomTransformerConfig |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
def forward(self, input_ids, labels=None, **kwargs): |
|
batch_size, seq_len = input_ids.shape |
|
device = input_ids.device |
|
masking_type = getattr(self.config, "masking_type", "bidirectional") |
|
|
|
if masking_type == 'bidirectional': |
|
base_mask = torch.ones(seq_len, seq_len, dtype=torch.bool, device=device) |
|
elif masking_type == 'bidirectional_masked': |
|
base_mask = torch.ones(seq_len, seq_len, dtype=torch.bool, device=device) |
|
base_mask.fill_diagonal_(False) |
|
elif masking_type == 'unidirectional': |
|
base_mask = torch.tril(torch.ones(seq_len, seq_len, dtype=torch.bool, device=device)) |
|
else: |
|
raise ValueError(f"Unknown masking type: {masking_type}") |
|
|
|
attention_mask = base_mask.unsqueeze(0).unsqueeze(1).expand(batch_size, 1, seq_len, seq_len).clone() |
|
attention_mask = attention_mask.to(dtype=torch.float32) |
|
|
|
|
|
with autocast("mps", dtype=torch.float16): |
|
outputs = self.llama( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
output_hidden_states=True, |
|
use_cache=False, |
|
**kwargs |
|
) |
|
|
|
logits = outputs.logits[:, :, :self.config.vocab_size].view(batch_size, seq_len, self.config.vocab_size) |
|
loss = None |
|
|
|
if labels is not None: |
|
assert labels.shape == (batch_size, seq_len) |
|
loss_fct = nn.CrossEntropyLoss() |
|
loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1)) |
|
|
|
return {"loss": loss, "logits": logits} if loss is not None else {"logits": logits} |
|
|