Spaces:
Ruurd
/
Running on Zero

tini-lad / models.py
Ruurd's picture
Add model config files
bd9baef
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.amp import autocast
from transformers import PreTrainedModel
from model_config import CustomTransformerConfig
class CustomTransformerModel(PreTrainedModel):
config_class = CustomTransformerConfig
def __init__(self, config):
super().__init__(config)
def forward(self, input_ids, labels=None, **kwargs):
batch_size, seq_len = input_ids.shape
device = input_ids.device
masking_type = getattr(self.config, "masking_type", "bidirectional")
if masking_type == 'bidirectional':
base_mask = torch.ones(seq_len, seq_len, dtype=torch.bool, device=device)
elif masking_type == 'bidirectional_masked':
base_mask = torch.ones(seq_len, seq_len, dtype=torch.bool, device=device)
base_mask.fill_diagonal_(False)
elif masking_type == 'unidirectional':
base_mask = torch.tril(torch.ones(seq_len, seq_len, dtype=torch.bool, device=device))
else:
raise ValueError(f"Unknown masking type: {masking_type}")
attention_mask = base_mask.unsqueeze(0).unsqueeze(1).expand(batch_size, 1, seq_len, seq_len).clone()
attention_mask = attention_mask.to(dtype=torch.float32)
with autocast("mps", dtype=torch.float16):
outputs = self.llama(
input_ids,
attention_mask=attention_mask,
output_hidden_states=True,
use_cache=False,
**kwargs
)
logits = outputs.logits[:, :, :self.config.vocab_size].view(batch_size, seq_len, self.config.vocab_size)
loss = None
if labels is not None:
assert labels.shape == (batch_size, seq_len)
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
return {"loss": loss, "logits": logits} if loss is not None else {"logits": logits}