SHIKARICHACHA's picture
Update app.py
c6a27a9 verified
"""
Adaptive Music Exercise Generator (Strict Duration Enforcement)
==============================================================
Generates custom musical exercises with LLM, perfectly fit to user-specified number of measures
AND time signature, guaranteeing exact durations in MIDI and in the UI!
Major updates:
- Added Gemma, Kimi Dev 72b, and Llama 3.1 AI model options
- Added duration sum display in Exercise Data tab
- Shows total duration units (16th notes) for verification
- Added DeepSeek AI model option
- Fixed difficulty level implementation
- Maintained all original functionality
"""
# -----------------------------------------------------------------------------
# 1. Runtime-time package installation (for fresh containers/Colab/etc)
# -----------------------------------------------------------------------------
import sys
import subprocess
from typing import Dict, Optional, Tuple, List
import time
import random
def install(packages: List[str]):
for package in packages:
try:
__import__(package)
except ImportError:
print(f"Installing missing package: {package}")
subprocess.check_call([sys.executable, "-m", "pip", "install", package])
install([
"mido", "midi2audio", "pydub", "gradio", "openai",
"requests", "numpy", "matplotlib", "librosa", "scipy",
])
# -----------------------------------------------------------------------------
# 2. Static imports
# -----------------------------------------------------------------------------
import requests
import json
import tempfile
import mido
from mido import Message, MidiFile, MidiTrack, MetaMessage
import re
from io import BytesIO
from midi2audio import FluidSynth
from pydub import AudioSegment
import gradio as gr
import numpy as np
import matplotlib.pyplot as plt
import librosa
from scipy.io import wavfile
import os
import subprocess as sp
import base64
import shutil
from openai import OpenAI # For API models
# -----------------------------------------------------------------------------
# 3. Configuration & constants
# -----------------------------------------------------------------------------
MISTRAL_API_URL = "https://api.mistral.ai/v1/chat/completions"
MISTRAL_API_KEY = "yQdfM8MLbX9uhInQ7id4iUTwN4h4pDLX" # Replace with your key
OPENROUTER_API_KEYS = {
"DeepSeek": "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",
"Claude": "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",
"Gemma": "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",
"Kimi": "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",
"Llama 3.1": "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"
}
SOUNDFONT_URLS = {
"Trumpet": "https://github.com/FluidSynth/fluidsynth/raw/master/sf2/Trumpet.sf2",
"Piano": "https://musical-artifacts.com/artifacts/2719/GeneralUser_GS_1.471.sf2",
"Violin": "https://musical-artifacts.com/artifacts/2744/SalC5Light.sf2",
"Clarinet": "https://musical-artifacts.com/artifacts/2744/SalC5Light.sf2",
"Flute": "https://musical-artifacts.com/artifacts/2744/SalC5Light.sf2",
}
SAMPLE_RATE = 44100 # Hz
TICKS_PER_BEAT = 480 # Standard MIDI resolution
TICKS_PER_16TH = TICKS_PER_BEAT // 4 # 120 ticks per 16th note
if not os.path.exists('/usr/bin/fluidsynth'):
try:
os.system('apt-get update && apt-get install -y fluidsynth')
except Exception:
print("Could not install FluidSynth automatically. Please install it manually.")
os.makedirs("static", exist_ok=True)
# -----------------------------------------------------------------------------
# 4. Music theory helpers (note names ↔︎ MIDI numbers)
# -----------------------------------------------------------------------------
NOTE_MAP: Dict[str, int] = {
"C": 0, "C#": 1, "DB": 1,
"D": 2, "D#": 3, "EB": 3,
"E": 4, "F": 5, "F#": 6, "GB": 6,
"G": 7, "G#": 8, "AB": 8,
"A": 9, "A#": 10, "BB": 10,
"B": 11,
}
INSTRUMENT_PROGRAMS: Dict[str, int] = {
"Piano": 0, "Trumpet": 56, "Violin": 40,
"Clarinet": 71, "Flute": 73,
}
def note_name_to_midi(note: str) -> int:
match = re.match(r"([A-Ga-g][#b]?)(\d)", note)
if not match:
raise ValueError(f"Invalid note: {note}")
pitch, octave = match.groups()
pitch = pitch.upper().replace('b', 'B')
if pitch not in NOTE_MAP:
raise ValueError(f"Invalid pitch: {pitch}")
return NOTE_MAP[pitch] + (int(octave) + 1) * 12
def midi_to_note_name(midi_num: int) -> str:
notes = ["C", "C#", "D", "D#", "E", "F", "F#", "G", "G#", "A", "A#", "B"]
octave = (midi_num // 12) - 1
return f"{notes[midi_num % 12]}{octave}"
# -----------------------------------------------------------------------------
# 5. Duration scaling: guarantee the output sums to requested total (using integers)
# -----------------------------------------------------------------------------
def scale_json_durations(json_data, target_units: int) -> list:
"""Scales durations so that their sum is exactly target_units (16th notes)."""
durations = [int(d) for _, d in json_data]
total = sum(durations)
if total == 0:
return json_data
# Calculate proportional scaling with integer arithmetic
scaled = []
remainder = target_units
for i, (note, d) in enumerate(json_data):
if i < len(json_data) - 1:
# Proportional allocation
portion = max(1, round(d * target_units / total))
scaled.append([note, portion])
remainder -= portion
else:
# Last note gets all remaining units
scaled.append([note, max(1, remainder)])
return scaled
# -----------------------------------------------------------------------------
# 6. MIDI from scaled JSON (using integer durations)
# -----------------------------------------------------------------------------
def json_to_midi(json_data: list, instrument: str, tempo: int, time_signature: str, measures: int) -> MidiFile:
mid = MidiFile(ticks_per_beat=TICKS_PER_BEAT)
track = MidiTrack(); mid.tracks.append(track)
program = INSTRUMENT_PROGRAMS.get(instrument, 56)
numerator, denominator = map(int, time_signature.split('/'))
track.append(MetaMessage('time_signature', numerator=numerator,
denominator=denominator, time=0))
track.append(MetaMessage('set_tempo', tempo=mido.bpm2tempo(tempo), time=0))
track.append(Message('program_change', program=program, time=0))
for note_name, duration_units in json_data:
try:
note_num = note_name_to_midi(note_name)
ticks = int(duration_units * TICKS_PER_16TH)
ticks = max(ticks, 1)
velocity = random.randint(60, 100)
track.append(Message('note_on', note=note_num, velocity=velocity, time=0))
track.append(Message('note_off', note=note_num, velocity=velocity, time=ticks))
except Exception as e:
print(f"Error parsing note {note_name}: {e}")
return mid
# -----------------------------------------------------------------------------
# 7. MIDI → Audio (MP3) helpers
# -----------------------------------------------------------------------------
def get_soundfont(instrument: str) -> str:
os.makedirs("soundfonts", exist_ok=True)
sf2_path = f"soundfonts/{instrument}.sf2"
if not os.path.exists(sf2_path):
url = SOUNDFONT_URLS.get(instrument, SOUNDFONT_URLS["Trumpet"])
print(f"Downloading SoundFont for {instrument}…")
response = requests.get(url)
with open(sf2_path, "wb") as f:
f.write(response.content)
return sf2_path
def midi_to_mp3(midi_obj: MidiFile, instrument: str = "Trumpet") -> Tuple[str, float]:
with tempfile.NamedTemporaryFile(delete=False, suffix=".mid") as mid_file:
midi_obj.save(mid_file.name)
wav_path = mid_file.name.replace(".mid", ".wav")
mp3_path = mid_file.name.replace(".mid", ".mp3")
sf2_path = get_soundfont(instrument)
try:
sp.run([
'fluidsynth', '-ni', sf2_path, mid_file.name,
'-F', wav_path, '-r', '44100', '-g', '1.0'
], check=True, capture_output=True)
except Exception:
fs = FluidSynth(sf2_path, sample_rate=44100, gain=1.0)
fs.midi_to_audio(mid_file.name, wav_path)
try:
sound = AudioSegment.from_wav(wav_path)
if instrument == "Trumpet":
sound = sound.high_pass_filter(200)
elif instrument == "Violin":
sound = sound.low_pass_filter(5000)
sound.export(mp3_path, format="mp3")
static_mp3_path = os.path.join('static', os.path.basename(mp3_path))
shutil.move(mp3_path, static_mp3_path)
return static_mp3_path, sound.duration_seconds
finally:
for f in [mid_file.name, wav_path]:
try:
os.remove(f)
except FileNotFoundError:
pass
# -----------------------------------------------------------------------------
# 8. Prompt engineering for variety (using integer durations)
# -----------------------------------------------------------------------------
def get_fallback_exercise(instrument: str, level: str, key: str,
time_sig: str, measures: int) -> str:
instrument_patterns = {
"Trumpet": ["C4", "D4", "E4", "G4", "E4", "C4"],
"Piano": ["C4", "E4", "G4", "C5", "G4", "E4"],
"Violin": ["G4", "A4", "B4", "D5", "B4", "G4"],
"Clarinet": ["E4", "F4", "G4", "Bb4", "G4", "E4"],
"Flute": ["A4", "B4", "C5", "E5", "C5", "A4"],
}
pattern = instrument_patterns.get(instrument, instrument_patterns["Trumpet"])
numerator, denominator = map(int, time_sig.split('/'))
units_per_measure = numerator * (16 // denominator)
target_units = measures * units_per_measure
notes, durs = [], []
i = 0
# Use quarter notes (4 units) as base duration
while len(notes) * 4 < target_units:
notes.append(pattern[i % len(pattern)])
durs.append(4)
i += 1
# Adjust last duration to match total exactly
total_units = len(durs) * 4
if total_units > target_units:
durs[-1] = 4 - (total_units - target_units)
return json.dumps([[n, d] for n, d in zip(notes, durs)])
def get_style_based_on_level(level: str) -> str:
styles = {
"Beginner": ["simple", "legato", "stepwise"],
"Intermediate": ["jazzy", "bluesy", "march-like", "syncopated"],
"Advanced": ["technical", "chromatic", "fast arpeggios", "wide intervals"],
}
return random.choice(styles.get(level, ["technical"]))
def get_technique_based_on_level(level: str) -> str:
techniques = {
"Beginner": ["with long tones", "with simple rhythms", "focusing on tone"],
"Intermediate": ["with slurs", "with accents", "using triplets"],
"Advanced": ["with double tonguing", "with extreme registers", "complex rhythms"],
}
return random.choice(techniques.get(level, ["with slurs"]))
# -----------------------------------------------------------------------------
# 9. LLM Query Function (with enhanced error handling)
# -----------------------------------------------------------------------------
def query_llm(model_name: str, prompt: str, instrument: str, level: str, key: str,
time_sig: str, measures: int) -> str:
numerator, denominator = map(int, time_sig.split('/'))
units_per_measure = numerator * (16 // denominator)
required_total = measures * units_per_measure
duration_constraint = (
f"Sum of all durations MUST BE EXACTLY {required_total} units (16th notes). "
f"Each integer duration represents a 16th note (1=16th, 2=8th, 4=quarter, 8=half, 16=whole). "
f"If it doesn't match, the exercise is invalid."
)
system_prompt = (
f"You are an expert music teacher specializing in {instrument.lower()}. "
"Create customized exercises using INTEGER durations representing 16th notes."
)
if prompt.strip():
user_prompt = (
f"{prompt} {duration_constraint} Output ONLY a JSON array of [note, duration] pairs."
)
else:
style = get_style_based_on_level(level)
technique = get_technique_based_on_level(level)
user_prompt = (
f"Create a {style} {instrument.lower()} exercise in {key} with {time_sig} time signature "
f"{technique} for a {level.lower()} player. {duration_constraint} "
"Output ONLY a JSON array of [note, duration] pairs following these rules: "
"Use standard note names (e.g., \"Bb4\", \"F#5\"). Monophonic only. "
"Durations: 1=16th, 2=8th, 4=quarter, 8=half, 16=whole. "
"Sum must be exactly as specified. ONLY output the JSON array. No prose."
)
# Retry up to 3 times for rate limited models
max_retries = 3
retry_delay = 5 # seconds
for attempt in range(max_retries):
try:
if model_name == "Mistral":
headers = {
"Authorization": f"Bearer {MISTRAL_API_KEY}",
"Content-Type": "application/json",
}
payload = {
"model": "mistral-medium",
"messages": [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt},
],
"temperature": 0.7 if level == "Advanced" else 0.5,
"max_tokens": 1000,
"top_p": 0.95,
"frequency_penalty": 0.2,
"presence_penalty": 0.2,
}
response = requests.post(MISTRAL_API_URL, headers=headers, json=payload)
response.raise_for_status()
content = response.json()["choices"][0]["message"]["content"]
return content.replace("```json","").replace("```","").strip()
elif model_name in ["DeepSeek", "Claude", "Gemma", "Kimi", "Llama 3.1"]:
client = OpenAI(
base_url="https://openrouter.ai/api/v1",
api_key=OPENROUTER_API_KEYS[model_name],
)
model_map = {
"DeepSeek": "deepseek/deepseek-chat-v3-0324:free",
"Claude": "anthropic/claude-3.5-sonnet:beta",
"Gemma": "google/gemma-3n-e2b-it:free",
"Kimi": "moonshotai/kimi-dev-72b:free",
"Llama 3.1": "meta-llama/llama-3.1-405b-instruct:free"
}
# Special handling for Gemma API structure
if model_name == "Gemma":
messages = [
{"role": "user", "content": user_prompt}
]
else:
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt},
]
completion = client.chat.completions.create(
extra_headers={
"HTTP-Referer": "https://github.com/AdaptiveMusicExerciseGenerator",
"X-Title": "Music Exercise Generator",
},
model=model_map[model_name],
messages=messages,
temperature=0.7 if level == "Advanced" else 0.5,
max_tokens=1000,
top_p=0.95,
frequency_penalty=0.2,
presence_penalty=0.2,
)
content = completion.choices[0].message.content
return content.replace("```json","").replace("```","").strip()
else:
return get_fallback_exercise(instrument, level, key, time_sig, measures)
except Exception as e:
print(f"Error querying {model_name} API (attempt {attempt+1}): {e}")
if "429" in str(e) or "Rate limit" in str(e):
print(f"Rate limited, retrying in {retry_delay} seconds...")
time.sleep(retry_delay)
retry_delay *= 2 # Exponential backoff
else:
break
# Fallback to Mistral if other APIs fail
print(f"All attempts failed for {model_name}, using Mistral fallback")
try:
headers = {
"Authorization": f"Bearer {MISTRAL_API_KEY}",
"Content-Type": "application/json",
}
payload = {
"model": "mistral-medium",
"messages": [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt},
],
"temperature": 0.7 if level == "Advanced" else 0.5,
"max_tokens": 1000,
"top_p": 0.95,
"frequency_penalty": 0.2,
"presence_penalty": 0.2,
}
response = requests.post(MISTRAL_API_URL, headers=headers, json=payload)
response.raise_for_status()
content = response.json()["choices"][0]["message"]["content"]
return content.replace("```json","").replace("```","").strip()
except Exception as e:
print(f"Error querying Mistral fallback: {e}")
return get_fallback_exercise(instrument, level, key, time_sig, measures)
# -----------------------------------------------------------------------------
# 10. Robust JSON parsing for LLM outputs
# -----------------------------------------------------------------------------
def safe_parse_json(text: str) -> Optional[list]:
try:
text = text.replace("'", '"')
match = re.search(r"\[(\s*\[.*?\]\s*,?)*\]", text, re.DOTALL)
if match:
return json.loads(match.group(0))
return json.loads(text)
except Exception as e:
print(f"JSON parsing error: {e}\nRaw text: {text}")
return None
# -----------------------------------------------------------------------------
# 11. Main orchestration: talk to API, *scale durations*, build MIDI, UI values
# -----------------------------------------------------------------------------
def generate_exercise(instrument: str, level: str, key: str, tempo: int, time_signature: str,
measures: int, custom_prompt: str, mode: str, ai_model: str) -> Tuple[str, Optional[str], str, MidiFile, str, str, int]:
try:
prompt_to_use = custom_prompt if mode == "Exercise Prompt" else ""
output = query_llm(ai_model, prompt_to_use, instrument, level, key, time_signature, measures)
parsed = safe_parse_json(output)
if not parsed:
return "Invalid JSON format", None, str(tempo), None, "0", time_signature, 0
# Calculate total required 16th notes
numerator, denominator = map(int, time_signature.split('/'))
units_per_measure = numerator * (16 // denominator)
total_units = measures * units_per_measure
# Strict scaling
parsed_scaled = scale_json_durations(parsed, total_units)
# Calculate total duration units
total_duration = sum(d for _, d in parsed_scaled)
# Generate MIDI and audio
midi = json_to_midi(parsed_scaled, instrument, tempo, time_signature, measures)
mp3_path, real_duration = midi_to_mp3(midi, instrument)
output_json_str = json.dumps(parsed_scaled, indent=2)
return output_json_str, mp3_path, str(tempo), midi, f"{real_duration:.2f} seconds", time_signature, total_duration
except Exception as e:
return f"Error: {str(e)}", None, str(tempo), None, "0", time_signature, 0
# -----------------------------------------------------------------------------
# 12. AI chat assistant with enhanced error handling
# -----------------------------------------------------------------------------
def handle_chat(message: str, history: List, instrument: str, level: str, ai_model: str):
if not message.strip():
return "", history
messages = [{"role": "system", "content": f"You are a {instrument} teacher for {level} students."}]
for user_msg, assistant_msg in history:
messages.append({"role": "user", "content": user_msg})
messages.append({"role": "assistant", "content": assistant_msg})
messages.append({"role": "user", "content": message})
max_retries = 3
retry_delay = 3 # seconds
for attempt in range(max_retries):
try:
if ai_model == "Mistral":
headers = {"Authorization": f"Bearer {MISTRAL_API_KEY}", "Content-Type": "application/json"}
payload = {"model": "mistral-medium", "messages": messages, "temperature": 0.7, "max_tokens": 500}
response = requests.post(MISTRAL_API_URL, headers=headers, json=payload)
response.raise_for_status()
content = response.json()["choices"][0]["message"]["content"]
history.append((message, content))
return "", history
elif ai_model in ["DeepSeek", "Claude", "Gemma", "Kimi", "Llama 3.1"]:
client = OpenAI(
base_url="https://openrouter.ai/api/v1",
api_key=OPENROUTER_API_KEYS[ai_model],
)
model_map = {
"DeepSeek": "deepseek/deepseek-chat-v3-0324:free",
"Claude": "anthropic/claude-3.5-sonnet:beta",
"Gemma": "google/gemma-3n-e2b-it:free",
"Kimi": "moonshotai/kimi-dev-72b:free",
"Llama 3.1": "meta-llama/llama-3.1-405b-instruct:free"
}
# Special handling for Gemma API structure
if ai_model == "Gemma":
adjusted_messages = [{"role": "user", "content": msg["content"]} for msg in messages]
else:
adjusted_messages = messages
completion = client.chat.completions.create(
extra_headers={
"HTTP-Referer": "https://github.com/AdaptiveMusicExerciseGenerator",
"X-Title": "Music Exercise Generator",
},
model=model_map[ai_model],
messages=adjusted_messages,
temperature=0.7,
max_tokens=500,
)
content = completion.choices[0].message.content
history.append((message, content))
return "", history
else:
history.append((message, "Error: Invalid AI model selected"))
return "", history
except Exception as e:
print(f"Chat error with {ai_model} (attempt {attempt+1}): {e}")
if "429" in str(e) or "Rate limit" in str(e):
print(f"Rate limited, retrying in {retry_delay} seconds...")
time.sleep(retry_delay)
retry_delay *= 2 # Exponential backoff
else:
# Fallback to Mistral
print(f"Using Mistral fallback for chat")
try:
headers = {"Authorization": f"Bearer {MISTRAL_API_KEY}", "Content-Type": "application/json"}
payload = {"model": "mistral-medium", "messages": messages, "temperature": 0.7, "max_tokens": 500}
response = requests.post(MISTRAL_API_URL, headers=headers, json=payload)
response.raise_for_status()
content = response.json()["choices"][0]["message"]["content"]
history.append((message, content))
return "", history
except Exception as e:
history.append((message, f"Error: {str(e)}"))
return "", history
history.append((message, "Error: All API attempts failed"))
return "", history
# -----------------------------------------------------------------------------
# 13. Gradio user interface definition
# -----------------------------------------------------------------------------
def create_ui() -> gr.Blocks:
with gr.Blocks(title="Adaptive Music Exercise Generator", theme="soft") as demo:
gr.Markdown("# 🎼 Adaptive Music Exercise Generator")
current_midi = gr.State(None)
current_exercise = gr.State("")
mode = gr.Radio(["Exercise Parameters","Exercise Prompt"], value="Exercise Parameters", label="Generation Mode")
with gr.Row():
with gr.Column(scale=1):
with gr.Group(visible=True) as params_group:
gr.Markdown("### Exercise Parameters")
ai_model = gr.Radio(
["Mistral", "DeepSeek", "Claude", "Gemma", "Kimi", "Llama 3.1"],
value="Mistral",
label="AI Model"
)
instrument = gr.Dropdown([
"Trumpet", "Piano", "Violin", "Clarinet", "Flute",
], value="Trumpet", label="Instrument")
level = gr.Radio([
"Beginner", "Intermediate", "Advanced",
], value="Intermediate", label="Difficulty Level")
key = gr.Dropdown([
"C Major", "G Major", "D Major", "F Major", "Bb Major", "A Minor", "E Minor",
], value="C Major", label="Key Signature")
time_signature = gr.Dropdown(["3/4", "4/4"], value="4/4", label="Time Signature")
measures = gr.Radio([4, 8], value=4, label="Length (measures)")
with gr.Group(visible=False) as prompt_group:
gr.Markdown("### Exercise Prompt")
custom_prompt = gr.Textbox("", label="Enter your custom prompt", lines=3)
measures_prompt = gr.Radio([4, 8], value=4, label="Length (measures)")
generate_btn = gr.Button("Generate Exercise", variant="primary")
with gr.Column(scale=2):
with gr.Tabs():
with gr.TabItem("Exercise Player"):
audio_output = gr.Audio(label="Generated Exercise", autoplay=True, type="filepath")
bpm_display = gr.Textbox(label="Tempo (BPM)")
time_sig_display = gr.Textbox(label="Time Signature")
duration_display = gr.Textbox(label="Audio Duration", interactive=False)
with gr.TabItem("Exercise Data"):
json_output = gr.Code(label="JSON Representation", language="json")
# Duration sum display
duration_sum = gr.Number(
label="Total Duration Units (16th notes)",
interactive=False,
precision=0
)
with gr.TabItem("MIDI Export"):
midi_output = gr.File(label="MIDI File")
download_midi = gr.Button("Generate MIDI File")
with gr.TabItem("AI Chat"):
chat_history = gr.Chatbot(label="Practice Assistant", height=400)
chat_message = gr.Textbox(label="Ask the AI anything about your practice")
send_chat_btn = gr.Button("Send")
# Toggle UI groups
mode.change(
fn=lambda m: {
params_group: gr.update(visible=(m == "Exercise Parameters")),
prompt_group: gr.update(visible=(m == "Exercise Prompt")),
},
inputs=[mode], outputs=[params_group, prompt_group]
)
def generate_caller(mode_val, instrument_val, level_val, key_val,
time_sig_val, measures_val, prompt_val, measures_prompt_val, ai_model_val):
real_measures = measures_prompt_val if mode_val == "Exercise Prompt" else measures_val
fixed_tempo = 60
return generate_exercise(
instrument_val, level_val, key_val, fixed_tempo, time_sig_val,
real_measures, prompt_val, mode_val, ai_model_val
)
generate_btn.click(
fn=generate_caller,
inputs=[mode, instrument, level, key, time_signature, measures, custom_prompt, measures_prompt, ai_model],
outputs=[json_output, audio_output, bpm_display, current_midi, duration_display, time_sig_display, duration_sum]
)
def save_midi(json_data, instr, time_sig):
parsed = safe_parse_json(json_data)
if not parsed:
return None
numerator, denominator = map(int, time_sig.split('/'))
units_per_measure = numerator * (16 // denominator)
total_units = sum(int(d[1]) for d in parsed)
measures_est = max(1, round(total_units / units_per_measure))
scaled = scale_json_durations(parsed, measures_est * units_per_measure)
midi_obj = json_to_midi(scaled, instr, 60, time_sig, measures_est)
midi_path = os.path.join("static", "exercise.mid")
midi_obj.save(midi_path)
return midi_path
download_midi.click(
fn=save_midi,
inputs=[json_output, instrument, time_signature],
outputs=[midi_output],
)
send_chat_btn.click(
fn=handle_chat,
inputs=[chat_message, chat_history, instrument, level, ai_model],
outputs=[chat_message, chat_history],
)
return demo
# -----------------------------------------------------------------------------
# 14. Entry point
# -----------------------------------------------------------------------------
if __name__ == "__main__":
demo = create_ui()
demo.launch()