Spaces:
Sleeping
Sleeping
Accent
#1
by
Sajidahamed
- opened
- Accent.ipynb +0 -2038
- accent.py +0 -180
- app.py +0 -65
- packages.txt +0 -2
- requirements.txt +0 -7
Accent.ipynb
DELETED
@@ -1,2038 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"nbformat": 4,
|
3 |
-
"nbformat_minor": 0,
|
4 |
-
"metadata": {
|
5 |
-
"colab": {
|
6 |
-
"provenance": [],
|
7 |
-
"gpuType": "T4"
|
8 |
-
},
|
9 |
-
"kernelspec": {
|
10 |
-
"name": "python3",
|
11 |
-
"display_name": "Python 3"
|
12 |
-
},
|
13 |
-
"language_info": {
|
14 |
-
"name": "python"
|
15 |
-
},
|
16 |
-
"accelerator": "GPU",
|
17 |
-
"widgets": {
|
18 |
-
"application/vnd.jupyter.widget-state+json": {
|
19 |
-
"025b845ba49e423cbfc757252db02381": {
|
20 |
-
"model_module": "@jupyter-widgets/controls",
|
21 |
-
"model_name": "HBoxModel",
|
22 |
-
"model_module_version": "1.5.0",
|
23 |
-
"state": {
|
24 |
-
"_dom_classes": [],
|
25 |
-
"_model_module": "@jupyter-widgets/controls",
|
26 |
-
"_model_module_version": "1.5.0",
|
27 |
-
"_model_name": "HBoxModel",
|
28 |
-
"_view_count": null,
|
29 |
-
"_view_module": "@jupyter-widgets/controls",
|
30 |
-
"_view_module_version": "1.5.0",
|
31 |
-
"_view_name": "HBoxView",
|
32 |
-
"box_style": "",
|
33 |
-
"children": [
|
34 |
-
"IPY_MODEL_e29ef8d387a94e6990343111c600d40f",
|
35 |
-
"IPY_MODEL_bd085d627a404aac90bb6336f74d22a9",
|
36 |
-
"IPY_MODEL_06c62bd2fcc346a197c3579d00ca0d44"
|
37 |
-
],
|
38 |
-
"layout": "IPY_MODEL_df3990918f424c60be35b4c5be90ac34"
|
39 |
-
}
|
40 |
-
},
|
41 |
-
"e29ef8d387a94e6990343111c600d40f": {
|
42 |
-
"model_module": "@jupyter-widgets/controls",
|
43 |
-
"model_name": "HTMLModel",
|
44 |
-
"model_module_version": "1.5.0",
|
45 |
-
"state": {
|
46 |
-
"_dom_classes": [],
|
47 |
-
"_model_module": "@jupyter-widgets/controls",
|
48 |
-
"_model_module_version": "1.5.0",
|
49 |
-
"_model_name": "HTMLModel",
|
50 |
-
"_view_count": null,
|
51 |
-
"_view_module": "@jupyter-widgets/controls",
|
52 |
-
"_view_module_version": "1.5.0",
|
53 |
-
"_view_name": "HTMLView",
|
54 |
-
"description": "",
|
55 |
-
"description_tooltip": null,
|
56 |
-
"layout": "IPY_MODEL_3c88eea7ce64430e94e998a81463143e",
|
57 |
-
"placeholder": "",
|
58 |
-
"style": "IPY_MODEL_0f38dc6f89064ec49950502e32a5cc53",
|
59 |
-
"value": "hyperparams.yaml: 100%"
|
60 |
-
}
|
61 |
-
},
|
62 |
-
"bd085d627a404aac90bb6336f74d22a9": {
|
63 |
-
"model_module": "@jupyter-widgets/controls",
|
64 |
-
"model_name": "FloatProgressModel",
|
65 |
-
"model_module_version": "1.5.0",
|
66 |
-
"state": {
|
67 |
-
"_dom_classes": [],
|
68 |
-
"_model_module": "@jupyter-widgets/controls",
|
69 |
-
"_model_module_version": "1.5.0",
|
70 |
-
"_model_name": "FloatProgressModel",
|
71 |
-
"_view_count": null,
|
72 |
-
"_view_module": "@jupyter-widgets/controls",
|
73 |
-
"_view_module_version": "1.5.0",
|
74 |
-
"_view_name": "ProgressView",
|
75 |
-
"bar_style": "success",
|
76 |
-
"description": "",
|
77 |
-
"description_tooltip": null,
|
78 |
-
"layout": "IPY_MODEL_f6d0a0357ac048d9ad5ef31056fb65a1",
|
79 |
-
"max": 1666,
|
80 |
-
"min": 0,
|
81 |
-
"orientation": "horizontal",
|
82 |
-
"style": "IPY_MODEL_a570c3b7f01a4906a51eff36d264bb26",
|
83 |
-
"value": 1666
|
84 |
-
}
|
85 |
-
},
|
86 |
-
"06c62bd2fcc346a197c3579d00ca0d44": {
|
87 |
-
"model_module": "@jupyter-widgets/controls",
|
88 |
-
"model_name": "HTMLModel",
|
89 |
-
"model_module_version": "1.5.0",
|
90 |
-
"state": {
|
91 |
-
"_dom_classes": [],
|
92 |
-
"_model_module": "@jupyter-widgets/controls",
|
93 |
-
"_model_module_version": "1.5.0",
|
94 |
-
"_model_name": "HTMLModel",
|
95 |
-
"_view_count": null,
|
96 |
-
"_view_module": "@jupyter-widgets/controls",
|
97 |
-
"_view_module_version": "1.5.0",
|
98 |
-
"_view_name": "HTMLView",
|
99 |
-
"description": "",
|
100 |
-
"description_tooltip": null,
|
101 |
-
"layout": "IPY_MODEL_4e352cff53fa49069d0131578fd3248d",
|
102 |
-
"placeholder": "",
|
103 |
-
"style": "IPY_MODEL_2ca94275b52b488fa7755de3c7b03216",
|
104 |
-
"value": " 1.67k/1.67k [00:00<00:00, 169kB/s]"
|
105 |
-
}
|
106 |
-
},
|
107 |
-
"df3990918f424c60be35b4c5be90ac34": {
|
108 |
-
"model_module": "@jupyter-widgets/base",
|
109 |
-
"model_name": "LayoutModel",
|
110 |
-
"model_module_version": "1.2.0",
|
111 |
-
"state": {
|
112 |
-
"_model_module": "@jupyter-widgets/base",
|
113 |
-
"_model_module_version": "1.2.0",
|
114 |
-
"_model_name": "LayoutModel",
|
115 |
-
"_view_count": null,
|
116 |
-
"_view_module": "@jupyter-widgets/base",
|
117 |
-
"_view_module_version": "1.2.0",
|
118 |
-
"_view_name": "LayoutView",
|
119 |
-
"align_content": null,
|
120 |
-
"align_items": null,
|
121 |
-
"align_self": null,
|
122 |
-
"border": null,
|
123 |
-
"bottom": null,
|
124 |
-
"display": null,
|
125 |
-
"flex": null,
|
126 |
-
"flex_flow": null,
|
127 |
-
"grid_area": null,
|
128 |
-
"grid_auto_columns": null,
|
129 |
-
"grid_auto_flow": null,
|
130 |
-
"grid_auto_rows": null,
|
131 |
-
"grid_column": null,
|
132 |
-
"grid_gap": null,
|
133 |
-
"grid_row": null,
|
134 |
-
"grid_template_areas": null,
|
135 |
-
"grid_template_columns": null,
|
136 |
-
"grid_template_rows": null,
|
137 |
-
"height": null,
|
138 |
-
"justify_content": null,
|
139 |
-
"justify_items": null,
|
140 |
-
"left": null,
|
141 |
-
"margin": null,
|
142 |
-
"max_height": null,
|
143 |
-
"max_width": null,
|
144 |
-
"min_height": null,
|
145 |
-
"min_width": null,
|
146 |
-
"object_fit": null,
|
147 |
-
"object_position": null,
|
148 |
-
"order": null,
|
149 |
-
"overflow": null,
|
150 |
-
"overflow_x": null,
|
151 |
-
"overflow_y": null,
|
152 |
-
"padding": null,
|
153 |
-
"right": null,
|
154 |
-
"top": null,
|
155 |
-
"visibility": null,
|
156 |
-
"width": null
|
157 |
-
}
|
158 |
-
},
|
159 |
-
"3c88eea7ce64430e94e998a81463143e": {
|
160 |
-
"model_module": "@jupyter-widgets/base",
|
161 |
-
"model_name": "LayoutModel",
|
162 |
-
"model_module_version": "1.2.0",
|
163 |
-
"state": {
|
164 |
-
"_model_module": "@jupyter-widgets/base",
|
165 |
-
"_model_module_version": "1.2.0",
|
166 |
-
"_model_name": "LayoutModel",
|
167 |
-
"_view_count": null,
|
168 |
-
"_view_module": "@jupyter-widgets/base",
|
169 |
-
"_view_module_version": "1.2.0",
|
170 |
-
"_view_name": "LayoutView",
|
171 |
-
"align_content": null,
|
172 |
-
"align_items": null,
|
173 |
-
"align_self": null,
|
174 |
-
"border": null,
|
175 |
-
"bottom": null,
|
176 |
-
"display": null,
|
177 |
-
"flex": null,
|
178 |
-
"flex_flow": null,
|
179 |
-
"grid_area": null,
|
180 |
-
"grid_auto_columns": null,
|
181 |
-
"grid_auto_flow": null,
|
182 |
-
"grid_auto_rows": null,
|
183 |
-
"grid_column": null,
|
184 |
-
"grid_gap": null,
|
185 |
-
"grid_row": null,
|
186 |
-
"grid_template_areas": null,
|
187 |
-
"grid_template_columns": null,
|
188 |
-
"grid_template_rows": null,
|
189 |
-
"height": null,
|
190 |
-
"justify_content": null,
|
191 |
-
"justify_items": null,
|
192 |
-
"left": null,
|
193 |
-
"margin": null,
|
194 |
-
"max_height": null,
|
195 |
-
"max_width": null,
|
196 |
-
"min_height": null,
|
197 |
-
"min_width": null,
|
198 |
-
"object_fit": null,
|
199 |
-
"object_position": null,
|
200 |
-
"order": null,
|
201 |
-
"overflow": null,
|
202 |
-
"overflow_x": null,
|
203 |
-
"overflow_y": null,
|
204 |
-
"padding": null,
|
205 |
-
"right": null,
|
206 |
-
"top": null,
|
207 |
-
"visibility": null,
|
208 |
-
"width": null
|
209 |
-
}
|
210 |
-
},
|
211 |
-
"0f38dc6f89064ec49950502e32a5cc53": {
|
212 |
-
"model_module": "@jupyter-widgets/controls",
|
213 |
-
"model_name": "DescriptionStyleModel",
|
214 |
-
"model_module_version": "1.5.0",
|
215 |
-
"state": {
|
216 |
-
"_model_module": "@jupyter-widgets/controls",
|
217 |
-
"_model_module_version": "1.5.0",
|
218 |
-
"_model_name": "DescriptionStyleModel",
|
219 |
-
"_view_count": null,
|
220 |
-
"_view_module": "@jupyter-widgets/base",
|
221 |
-
"_view_module_version": "1.2.0",
|
222 |
-
"_view_name": "StyleView",
|
223 |
-
"description_width": ""
|
224 |
-
}
|
225 |
-
},
|
226 |
-
"f6d0a0357ac048d9ad5ef31056fb65a1": {
|
227 |
-
"model_module": "@jupyter-widgets/base",
|
228 |
-
"model_name": "LayoutModel",
|
229 |
-
"model_module_version": "1.2.0",
|
230 |
-
"state": {
|
231 |
-
"_model_module": "@jupyter-widgets/base",
|
232 |
-
"_model_module_version": "1.2.0",
|
233 |
-
"_model_name": "LayoutModel",
|
234 |
-
"_view_count": null,
|
235 |
-
"_view_module": "@jupyter-widgets/base",
|
236 |
-
"_view_module_version": "1.2.0",
|
237 |
-
"_view_name": "LayoutView",
|
238 |
-
"align_content": null,
|
239 |
-
"align_items": null,
|
240 |
-
"align_self": null,
|
241 |
-
"border": null,
|
242 |
-
"bottom": null,
|
243 |
-
"display": null,
|
244 |
-
"flex": null,
|
245 |
-
"flex_flow": null,
|
246 |
-
"grid_area": null,
|
247 |
-
"grid_auto_columns": null,
|
248 |
-
"grid_auto_flow": null,
|
249 |
-
"grid_auto_rows": null,
|
250 |
-
"grid_column": null,
|
251 |
-
"grid_gap": null,
|
252 |
-
"grid_row": null,
|
253 |
-
"grid_template_areas": null,
|
254 |
-
"grid_template_columns": null,
|
255 |
-
"grid_template_rows": null,
|
256 |
-
"height": null,
|
257 |
-
"justify_content": null,
|
258 |
-
"justify_items": null,
|
259 |
-
"left": null,
|
260 |
-
"margin": null,
|
261 |
-
"max_height": null,
|
262 |
-
"max_width": null,
|
263 |
-
"min_height": null,
|
264 |
-
"min_width": null,
|
265 |
-
"object_fit": null,
|
266 |
-
"object_position": null,
|
267 |
-
"order": null,
|
268 |
-
"overflow": null,
|
269 |
-
"overflow_x": null,
|
270 |
-
"overflow_y": null,
|
271 |
-
"padding": null,
|
272 |
-
"right": null,
|
273 |
-
"top": null,
|
274 |
-
"visibility": null,
|
275 |
-
"width": null
|
276 |
-
}
|
277 |
-
},
|
278 |
-
"a570c3b7f01a4906a51eff36d264bb26": {
|
279 |
-
"model_module": "@jupyter-widgets/controls",
|
280 |
-
"model_name": "ProgressStyleModel",
|
281 |
-
"model_module_version": "1.5.0",
|
282 |
-
"state": {
|
283 |
-
"_model_module": "@jupyter-widgets/controls",
|
284 |
-
"_model_module_version": "1.5.0",
|
285 |
-
"_model_name": "ProgressStyleModel",
|
286 |
-
"_view_count": null,
|
287 |
-
"_view_module": "@jupyter-widgets/base",
|
288 |
-
"_view_module_version": "1.2.0",
|
289 |
-
"_view_name": "StyleView",
|
290 |
-
"bar_color": null,
|
291 |
-
"description_width": ""
|
292 |
-
}
|
293 |
-
},
|
294 |
-
"4e352cff53fa49069d0131578fd3248d": {
|
295 |
-
"model_module": "@jupyter-widgets/base",
|
296 |
-
"model_name": "LayoutModel",
|
297 |
-
"model_module_version": "1.2.0",
|
298 |
-
"state": {
|
299 |
-
"_model_module": "@jupyter-widgets/base",
|
300 |
-
"_model_module_version": "1.2.0",
|
301 |
-
"_model_name": "LayoutModel",
|
302 |
-
"_view_count": null,
|
303 |
-
"_view_module": "@jupyter-widgets/base",
|
304 |
-
"_view_module_version": "1.2.0",
|
305 |
-
"_view_name": "LayoutView",
|
306 |
-
"align_content": null,
|
307 |
-
"align_items": null,
|
308 |
-
"align_self": null,
|
309 |
-
"border": null,
|
310 |
-
"bottom": null,
|
311 |
-
"display": null,
|
312 |
-
"flex": null,
|
313 |
-
"flex_flow": null,
|
314 |
-
"grid_area": null,
|
315 |
-
"grid_auto_columns": null,
|
316 |
-
"grid_auto_flow": null,
|
317 |
-
"grid_auto_rows": null,
|
318 |
-
"grid_column": null,
|
319 |
-
"grid_gap": null,
|
320 |
-
"grid_row": null,
|
321 |
-
"grid_template_areas": null,
|
322 |
-
"grid_template_columns": null,
|
323 |
-
"grid_template_rows": null,
|
324 |
-
"height": null,
|
325 |
-
"justify_content": null,
|
326 |
-
"justify_items": null,
|
327 |
-
"left": null,
|
328 |
-
"margin": null,
|
329 |
-
"max_height": null,
|
330 |
-
"max_width": null,
|
331 |
-
"min_height": null,
|
332 |
-
"min_width": null,
|
333 |
-
"object_fit": null,
|
334 |
-
"object_position": null,
|
335 |
-
"order": null,
|
336 |
-
"overflow": null,
|
337 |
-
"overflow_x": null,
|
338 |
-
"overflow_y": null,
|
339 |
-
"padding": null,
|
340 |
-
"right": null,
|
341 |
-
"top": null,
|
342 |
-
"visibility": null,
|
343 |
-
"width": null
|
344 |
-
}
|
345 |
-
},
|
346 |
-
"2ca94275b52b488fa7755de3c7b03216": {
|
347 |
-
"model_module": "@jupyter-widgets/controls",
|
348 |
-
"model_name": "DescriptionStyleModel",
|
349 |
-
"model_module_version": "1.5.0",
|
350 |
-
"state": {
|
351 |
-
"_model_module": "@jupyter-widgets/controls",
|
352 |
-
"_model_module_version": "1.5.0",
|
353 |
-
"_model_name": "DescriptionStyleModel",
|
354 |
-
"_view_count": null,
|
355 |
-
"_view_module": "@jupyter-widgets/base",
|
356 |
-
"_view_module_version": "1.2.0",
|
357 |
-
"_view_name": "StyleView",
|
358 |
-
"description_width": ""
|
359 |
-
}
|
360 |
-
},
|
361 |
-
"d7a05ee4c7c24eacbddf57ab6644639b": {
|
362 |
-
"model_module": "@jupyter-widgets/controls",
|
363 |
-
"model_name": "HBoxModel",
|
364 |
-
"model_module_version": "1.5.0",
|
365 |
-
"state": {
|
366 |
-
"_dom_classes": [],
|
367 |
-
"_model_module": "@jupyter-widgets/controls",
|
368 |
-
"_model_module_version": "1.5.0",
|
369 |
-
"_model_name": "HBoxModel",
|
370 |
-
"_view_count": null,
|
371 |
-
"_view_module": "@jupyter-widgets/controls",
|
372 |
-
"_view_module_version": "1.5.0",
|
373 |
-
"_view_name": "HBoxView",
|
374 |
-
"box_style": "",
|
375 |
-
"children": [
|
376 |
-
"IPY_MODEL_9e2406e1e42d42068d99c706484bab9a",
|
377 |
-
"IPY_MODEL_2d49939f1d264b59906278bf4939ab2a",
|
378 |
-
"IPY_MODEL_87a3a050b04e4e5b941951780926d36c"
|
379 |
-
],
|
380 |
-
"layout": "IPY_MODEL_f0d5a89ad850448abcd506d6de86fff9"
|
381 |
-
}
|
382 |
-
},
|
383 |
-
"9e2406e1e42d42068d99c706484bab9a": {
|
384 |
-
"model_module": "@jupyter-widgets/controls",
|
385 |
-
"model_name": "HTMLModel",
|
386 |
-
"model_module_version": "1.5.0",
|
387 |
-
"state": {
|
388 |
-
"_dom_classes": [],
|
389 |
-
"_model_module": "@jupyter-widgets/controls",
|
390 |
-
"_model_module_version": "1.5.0",
|
391 |
-
"_model_name": "HTMLModel",
|
392 |
-
"_view_count": null,
|
393 |
-
"_view_module": "@jupyter-widgets/controls",
|
394 |
-
"_view_module_version": "1.5.0",
|
395 |
-
"_view_name": "HTMLView",
|
396 |
-
"description": "",
|
397 |
-
"description_tooltip": null,
|
398 |
-
"layout": "IPY_MODEL_16ccf523e9c24390ba654e282241831d",
|
399 |
-
"placeholder": "",
|
400 |
-
"style": "IPY_MODEL_25da015c20f8426db38b3853245b37a4",
|
401 |
-
"value": "embedding_model.ckpt: 100%"
|
402 |
-
}
|
403 |
-
},
|
404 |
-
"2d49939f1d264b59906278bf4939ab2a": {
|
405 |
-
"model_module": "@jupyter-widgets/controls",
|
406 |
-
"model_name": "FloatProgressModel",
|
407 |
-
"model_module_version": "1.5.0",
|
408 |
-
"state": {
|
409 |
-
"_dom_classes": [],
|
410 |
-
"_model_module": "@jupyter-widgets/controls",
|
411 |
-
"_model_module_version": "1.5.0",
|
412 |
-
"_model_name": "FloatProgressModel",
|
413 |
-
"_view_count": null,
|
414 |
-
"_view_module": "@jupyter-widgets/controls",
|
415 |
-
"_view_module_version": "1.5.0",
|
416 |
-
"_view_name": "ProgressView",
|
417 |
-
"bar_style": "success",
|
418 |
-
"description": "",
|
419 |
-
"description_tooltip": null,
|
420 |
-
"layout": "IPY_MODEL_77c6272fc49448529d7a7a919b1cc418",
|
421 |
-
"max": 83310835,
|
422 |
-
"min": 0,
|
423 |
-
"orientation": "horizontal",
|
424 |
-
"style": "IPY_MODEL_a9c2643b4c3f4af7b54b9c3940377519",
|
425 |
-
"value": 83310835
|
426 |
-
}
|
427 |
-
},
|
428 |
-
"87a3a050b04e4e5b941951780926d36c": {
|
429 |
-
"model_module": "@jupyter-widgets/controls",
|
430 |
-
"model_name": "HTMLModel",
|
431 |
-
"model_module_version": "1.5.0",
|
432 |
-
"state": {
|
433 |
-
"_dom_classes": [],
|
434 |
-
"_model_module": "@jupyter-widgets/controls",
|
435 |
-
"_model_module_version": "1.5.0",
|
436 |
-
"_model_name": "HTMLModel",
|
437 |
-
"_view_count": null,
|
438 |
-
"_view_module": "@jupyter-widgets/controls",
|
439 |
-
"_view_module_version": "1.5.0",
|
440 |
-
"_view_name": "HTMLView",
|
441 |
-
"description": "",
|
442 |
-
"description_tooltip": null,
|
443 |
-
"layout": "IPY_MODEL_75b859dc0f5642408cf318d6583a8da3",
|
444 |
-
"placeholder": "",
|
445 |
-
"style": "IPY_MODEL_424c140f22c142988c5e95114c4680d7",
|
446 |
-
"value": " 83.3M/83.3M [00:00<00:00, 156MB/s]"
|
447 |
-
}
|
448 |
-
},
|
449 |
-
"f0d5a89ad850448abcd506d6de86fff9": {
|
450 |
-
"model_module": "@jupyter-widgets/base",
|
451 |
-
"model_name": "LayoutModel",
|
452 |
-
"model_module_version": "1.2.0",
|
453 |
-
"state": {
|
454 |
-
"_model_module": "@jupyter-widgets/base",
|
455 |
-
"_model_module_version": "1.2.0",
|
456 |
-
"_model_name": "LayoutModel",
|
457 |
-
"_view_count": null,
|
458 |
-
"_view_module": "@jupyter-widgets/base",
|
459 |
-
"_view_module_version": "1.2.0",
|
460 |
-
"_view_name": "LayoutView",
|
461 |
-
"align_content": null,
|
462 |
-
"align_items": null,
|
463 |
-
"align_self": null,
|
464 |
-
"border": null,
|
465 |
-
"bottom": null,
|
466 |
-
"display": null,
|
467 |
-
"flex": null,
|
468 |
-
"flex_flow": null,
|
469 |
-
"grid_area": null,
|
470 |
-
"grid_auto_columns": null,
|
471 |
-
"grid_auto_flow": null,
|
472 |
-
"grid_auto_rows": null,
|
473 |
-
"grid_column": null,
|
474 |
-
"grid_gap": null,
|
475 |
-
"grid_row": null,
|
476 |
-
"grid_template_areas": null,
|
477 |
-
"grid_template_columns": null,
|
478 |
-
"grid_template_rows": null,
|
479 |
-
"height": null,
|
480 |
-
"justify_content": null,
|
481 |
-
"justify_items": null,
|
482 |
-
"left": null,
|
483 |
-
"margin": null,
|
484 |
-
"max_height": null,
|
485 |
-
"max_width": null,
|
486 |
-
"min_height": null,
|
487 |
-
"min_width": null,
|
488 |
-
"object_fit": null,
|
489 |
-
"object_position": null,
|
490 |
-
"order": null,
|
491 |
-
"overflow": null,
|
492 |
-
"overflow_x": null,
|
493 |
-
"overflow_y": null,
|
494 |
-
"padding": null,
|
495 |
-
"right": null,
|
496 |
-
"top": null,
|
497 |
-
"visibility": null,
|
498 |
-
"width": null
|
499 |
-
}
|
500 |
-
},
|
501 |
-
"16ccf523e9c24390ba654e282241831d": {
|
502 |
-
"model_module": "@jupyter-widgets/base",
|
503 |
-
"model_name": "LayoutModel",
|
504 |
-
"model_module_version": "1.2.0",
|
505 |
-
"state": {
|
506 |
-
"_model_module": "@jupyter-widgets/base",
|
507 |
-
"_model_module_version": "1.2.0",
|
508 |
-
"_model_name": "LayoutModel",
|
509 |
-
"_view_count": null,
|
510 |
-
"_view_module": "@jupyter-widgets/base",
|
511 |
-
"_view_module_version": "1.2.0",
|
512 |
-
"_view_name": "LayoutView",
|
513 |
-
"align_content": null,
|
514 |
-
"align_items": null,
|
515 |
-
"align_self": null,
|
516 |
-
"border": null,
|
517 |
-
"bottom": null,
|
518 |
-
"display": null,
|
519 |
-
"flex": null,
|
520 |
-
"flex_flow": null,
|
521 |
-
"grid_area": null,
|
522 |
-
"grid_auto_columns": null,
|
523 |
-
"grid_auto_flow": null,
|
524 |
-
"grid_auto_rows": null,
|
525 |
-
"grid_column": null,
|
526 |
-
"grid_gap": null,
|
527 |
-
"grid_row": null,
|
528 |
-
"grid_template_areas": null,
|
529 |
-
"grid_template_columns": null,
|
530 |
-
"grid_template_rows": null,
|
531 |
-
"height": null,
|
532 |
-
"justify_content": null,
|
533 |
-
"justify_items": null,
|
534 |
-
"left": null,
|
535 |
-
"margin": null,
|
536 |
-
"max_height": null,
|
537 |
-
"max_width": null,
|
538 |
-
"min_height": null,
|
539 |
-
"min_width": null,
|
540 |
-
"object_fit": null,
|
541 |
-
"object_position": null,
|
542 |
-
"order": null,
|
543 |
-
"overflow": null,
|
544 |
-
"overflow_x": null,
|
545 |
-
"overflow_y": null,
|
546 |
-
"padding": null,
|
547 |
-
"right": null,
|
548 |
-
"top": null,
|
549 |
-
"visibility": null,
|
550 |
-
"width": null
|
551 |
-
}
|
552 |
-
},
|
553 |
-
"25da015c20f8426db38b3853245b37a4": {
|
554 |
-
"model_module": "@jupyter-widgets/controls",
|
555 |
-
"model_name": "DescriptionStyleModel",
|
556 |
-
"model_module_version": "1.5.0",
|
557 |
-
"state": {
|
558 |
-
"_model_module": "@jupyter-widgets/controls",
|
559 |
-
"_model_module_version": "1.5.0",
|
560 |
-
"_model_name": "DescriptionStyleModel",
|
561 |
-
"_view_count": null,
|
562 |
-
"_view_module": "@jupyter-widgets/base",
|
563 |
-
"_view_module_version": "1.2.0",
|
564 |
-
"_view_name": "StyleView",
|
565 |
-
"description_width": ""
|
566 |
-
}
|
567 |
-
},
|
568 |
-
"77c6272fc49448529d7a7a919b1cc418": {
|
569 |
-
"model_module": "@jupyter-widgets/base",
|
570 |
-
"model_name": "LayoutModel",
|
571 |
-
"model_module_version": "1.2.0",
|
572 |
-
"state": {
|
573 |
-
"_model_module": "@jupyter-widgets/base",
|
574 |
-
"_model_module_version": "1.2.0",
|
575 |
-
"_model_name": "LayoutModel",
|
576 |
-
"_view_count": null,
|
577 |
-
"_view_module": "@jupyter-widgets/base",
|
578 |
-
"_view_module_version": "1.2.0",
|
579 |
-
"_view_name": "LayoutView",
|
580 |
-
"align_content": null,
|
581 |
-
"align_items": null,
|
582 |
-
"align_self": null,
|
583 |
-
"border": null,
|
584 |
-
"bottom": null,
|
585 |
-
"display": null,
|
586 |
-
"flex": null,
|
587 |
-
"flex_flow": null,
|
588 |
-
"grid_area": null,
|
589 |
-
"grid_auto_columns": null,
|
590 |
-
"grid_auto_flow": null,
|
591 |
-
"grid_auto_rows": null,
|
592 |
-
"grid_column": null,
|
593 |
-
"grid_gap": null,
|
594 |
-
"grid_row": null,
|
595 |
-
"grid_template_areas": null,
|
596 |
-
"grid_template_columns": null,
|
597 |
-
"grid_template_rows": null,
|
598 |
-
"height": null,
|
599 |
-
"justify_content": null,
|
600 |
-
"justify_items": null,
|
601 |
-
"left": null,
|
602 |
-
"margin": null,
|
603 |
-
"max_height": null,
|
604 |
-
"max_width": null,
|
605 |
-
"min_height": null,
|
606 |
-
"min_width": null,
|
607 |
-
"object_fit": null,
|
608 |
-
"object_position": null,
|
609 |
-
"order": null,
|
610 |
-
"overflow": null,
|
611 |
-
"overflow_x": null,
|
612 |
-
"overflow_y": null,
|
613 |
-
"padding": null,
|
614 |
-
"right": null,
|
615 |
-
"top": null,
|
616 |
-
"visibility": null,
|
617 |
-
"width": null
|
618 |
-
}
|
619 |
-
},
|
620 |
-
"a9c2643b4c3f4af7b54b9c3940377519": {
|
621 |
-
"model_module": "@jupyter-widgets/controls",
|
622 |
-
"model_name": "ProgressStyleModel",
|
623 |
-
"model_module_version": "1.5.0",
|
624 |
-
"state": {
|
625 |
-
"_model_module": "@jupyter-widgets/controls",
|
626 |
-
"_model_module_version": "1.5.0",
|
627 |
-
"_model_name": "ProgressStyleModel",
|
628 |
-
"_view_count": null,
|
629 |
-
"_view_module": "@jupyter-widgets/base",
|
630 |
-
"_view_module_version": "1.2.0",
|
631 |
-
"_view_name": "StyleView",
|
632 |
-
"bar_color": null,
|
633 |
-
"description_width": ""
|
634 |
-
}
|
635 |
-
},
|
636 |
-
"75b859dc0f5642408cf318d6583a8da3": {
|
637 |
-
"model_module": "@jupyter-widgets/base",
|
638 |
-
"model_name": "LayoutModel",
|
639 |
-
"model_module_version": "1.2.0",
|
640 |
-
"state": {
|
641 |
-
"_model_module": "@jupyter-widgets/base",
|
642 |
-
"_model_module_version": "1.2.0",
|
643 |
-
"_model_name": "LayoutModel",
|
644 |
-
"_view_count": null,
|
645 |
-
"_view_module": "@jupyter-widgets/base",
|
646 |
-
"_view_module_version": "1.2.0",
|
647 |
-
"_view_name": "LayoutView",
|
648 |
-
"align_content": null,
|
649 |
-
"align_items": null,
|
650 |
-
"align_self": null,
|
651 |
-
"border": null,
|
652 |
-
"bottom": null,
|
653 |
-
"display": null,
|
654 |
-
"flex": null,
|
655 |
-
"flex_flow": null,
|
656 |
-
"grid_area": null,
|
657 |
-
"grid_auto_columns": null,
|
658 |
-
"grid_auto_flow": null,
|
659 |
-
"grid_auto_rows": null,
|
660 |
-
"grid_column": null,
|
661 |
-
"grid_gap": null,
|
662 |
-
"grid_row": null,
|
663 |
-
"grid_template_areas": null,
|
664 |
-
"grid_template_columns": null,
|
665 |
-
"grid_template_rows": null,
|
666 |
-
"height": null,
|
667 |
-
"justify_content": null,
|
668 |
-
"justify_items": null,
|
669 |
-
"left": null,
|
670 |
-
"margin": null,
|
671 |
-
"max_height": null,
|
672 |
-
"max_width": null,
|
673 |
-
"min_height": null,
|
674 |
-
"min_width": null,
|
675 |
-
"object_fit": null,
|
676 |
-
"object_position": null,
|
677 |
-
"order": null,
|
678 |
-
"overflow": null,
|
679 |
-
"overflow_x": null,
|
680 |
-
"overflow_y": null,
|
681 |
-
"padding": null,
|
682 |
-
"right": null,
|
683 |
-
"top": null,
|
684 |
-
"visibility": null,
|
685 |
-
"width": null
|
686 |
-
}
|
687 |
-
},
|
688 |
-
"424c140f22c142988c5e95114c4680d7": {
|
689 |
-
"model_module": "@jupyter-widgets/controls",
|
690 |
-
"model_name": "DescriptionStyleModel",
|
691 |
-
"model_module_version": "1.5.0",
|
692 |
-
"state": {
|
693 |
-
"_model_module": "@jupyter-widgets/controls",
|
694 |
-
"_model_module_version": "1.5.0",
|
695 |
-
"_model_name": "DescriptionStyleModel",
|
696 |
-
"_view_count": null,
|
697 |
-
"_view_module": "@jupyter-widgets/base",
|
698 |
-
"_view_module_version": "1.2.0",
|
699 |
-
"_view_name": "StyleView",
|
700 |
-
"description_width": ""
|
701 |
-
}
|
702 |
-
},
|
703 |
-
"a0ae653cdf364d528ff132a48c1020c4": {
|
704 |
-
"model_module": "@jupyter-widgets/controls",
|
705 |
-
"model_name": "HBoxModel",
|
706 |
-
"model_module_version": "1.5.0",
|
707 |
-
"state": {
|
708 |
-
"_dom_classes": [],
|
709 |
-
"_model_module": "@jupyter-widgets/controls",
|
710 |
-
"_model_module_version": "1.5.0",
|
711 |
-
"_model_name": "HBoxModel",
|
712 |
-
"_view_count": null,
|
713 |
-
"_view_module": "@jupyter-widgets/controls",
|
714 |
-
"_view_module_version": "1.5.0",
|
715 |
-
"_view_name": "HBoxView",
|
716 |
-
"box_style": "",
|
717 |
-
"children": [
|
718 |
-
"IPY_MODEL_353f33d613d34b13944aaca5017752e1",
|
719 |
-
"IPY_MODEL_bb24cf37e9d948bb81527968af1194c9",
|
720 |
-
"IPY_MODEL_c2e2a5f07c594707a215a3f3c5e673b9"
|
721 |
-
],
|
722 |
-
"layout": "IPY_MODEL_ae843746277c43e5bbe68390ad8ea887"
|
723 |
-
}
|
724 |
-
},
|
725 |
-
"353f33d613d34b13944aaca5017752e1": {
|
726 |
-
"model_module": "@jupyter-widgets/controls",
|
727 |
-
"model_name": "HTMLModel",
|
728 |
-
"model_module_version": "1.5.0",
|
729 |
-
"state": {
|
730 |
-
"_dom_classes": [],
|
731 |
-
"_model_module": "@jupyter-widgets/controls",
|
732 |
-
"_model_module_version": "1.5.0",
|
733 |
-
"_model_name": "HTMLModel",
|
734 |
-
"_view_count": null,
|
735 |
-
"_view_module": "@jupyter-widgets/controls",
|
736 |
-
"_view_module_version": "1.5.0",
|
737 |
-
"_view_name": "HTMLView",
|
738 |
-
"description": "",
|
739 |
-
"description_tooltip": null,
|
740 |
-
"layout": "IPY_MODEL_901c650e39ea4ddc8148e80f087b40e5",
|
741 |
-
"placeholder": "",
|
742 |
-
"style": "IPY_MODEL_71ffe21e8fe04be3ab6bfb4c10ae2403",
|
743 |
-
"value": "classifier.ckpt: 100%"
|
744 |
-
}
|
745 |
-
},
|
746 |
-
"bb24cf37e9d948bb81527968af1194c9": {
|
747 |
-
"model_module": "@jupyter-widgets/controls",
|
748 |
-
"model_name": "FloatProgressModel",
|
749 |
-
"model_module_version": "1.5.0",
|
750 |
-
"state": {
|
751 |
-
"_dom_classes": [],
|
752 |
-
"_model_module": "@jupyter-widgets/controls",
|
753 |
-
"_model_module_version": "1.5.0",
|
754 |
-
"_model_name": "FloatProgressModel",
|
755 |
-
"_view_count": null,
|
756 |
-
"_view_module": "@jupyter-widgets/controls",
|
757 |
-
"_view_module_version": "1.5.0",
|
758 |
-
"_view_name": "ProgressView",
|
759 |
-
"bar_style": "success",
|
760 |
-
"description": "",
|
761 |
-
"description_tooltip": null,
|
762 |
-
"layout": "IPY_MODEL_a749c4a8500c45c4b083918cac225bc0",
|
763 |
-
"max": 35371,
|
764 |
-
"min": 0,
|
765 |
-
"orientation": "horizontal",
|
766 |
-
"style": "IPY_MODEL_9182ff55244542aa9f77a7fefa181f49",
|
767 |
-
"value": 35371
|
768 |
-
}
|
769 |
-
},
|
770 |
-
"c2e2a5f07c594707a215a3f3c5e673b9": {
|
771 |
-
"model_module": "@jupyter-widgets/controls",
|
772 |
-
"model_name": "HTMLModel",
|
773 |
-
"model_module_version": "1.5.0",
|
774 |
-
"state": {
|
775 |
-
"_dom_classes": [],
|
776 |
-
"_model_module": "@jupyter-widgets/controls",
|
777 |
-
"_model_module_version": "1.5.0",
|
778 |
-
"_model_name": "HTMLModel",
|
779 |
-
"_view_count": null,
|
780 |
-
"_view_module": "@jupyter-widgets/controls",
|
781 |
-
"_view_module_version": "1.5.0",
|
782 |
-
"_view_name": "HTMLView",
|
783 |
-
"description": "",
|
784 |
-
"description_tooltip": null,
|
785 |
-
"layout": "IPY_MODEL_a9c504808b7c4b87919dfc976342fe0e",
|
786 |
-
"placeholder": "",
|
787 |
-
"style": "IPY_MODEL_7f6e9e7d12574620a04e3ce7040f40d6",
|
788 |
-
"value": " 35.4k/35.4k [00:00<00:00, 2.55MB/s]"
|
789 |
-
}
|
790 |
-
},
|
791 |
-
"ae843746277c43e5bbe68390ad8ea887": {
|
792 |
-
"model_module": "@jupyter-widgets/base",
|
793 |
-
"model_name": "LayoutModel",
|
794 |
-
"model_module_version": "1.2.0",
|
795 |
-
"state": {
|
796 |
-
"_model_module": "@jupyter-widgets/base",
|
797 |
-
"_model_module_version": "1.2.0",
|
798 |
-
"_model_name": "LayoutModel",
|
799 |
-
"_view_count": null,
|
800 |
-
"_view_module": "@jupyter-widgets/base",
|
801 |
-
"_view_module_version": "1.2.0",
|
802 |
-
"_view_name": "LayoutView",
|
803 |
-
"align_content": null,
|
804 |
-
"align_items": null,
|
805 |
-
"align_self": null,
|
806 |
-
"border": null,
|
807 |
-
"bottom": null,
|
808 |
-
"display": null,
|
809 |
-
"flex": null,
|
810 |
-
"flex_flow": null,
|
811 |
-
"grid_area": null,
|
812 |
-
"grid_auto_columns": null,
|
813 |
-
"grid_auto_flow": null,
|
814 |
-
"grid_auto_rows": null,
|
815 |
-
"grid_column": null,
|
816 |
-
"grid_gap": null,
|
817 |
-
"grid_row": null,
|
818 |
-
"grid_template_areas": null,
|
819 |
-
"grid_template_columns": null,
|
820 |
-
"grid_template_rows": null,
|
821 |
-
"height": null,
|
822 |
-
"justify_content": null,
|
823 |
-
"justify_items": null,
|
824 |
-
"left": null,
|
825 |
-
"margin": null,
|
826 |
-
"max_height": null,
|
827 |
-
"max_width": null,
|
828 |
-
"min_height": null,
|
829 |
-
"min_width": null,
|
830 |
-
"object_fit": null,
|
831 |
-
"object_position": null,
|
832 |
-
"order": null,
|
833 |
-
"overflow": null,
|
834 |
-
"overflow_x": null,
|
835 |
-
"overflow_y": null,
|
836 |
-
"padding": null,
|
837 |
-
"right": null,
|
838 |
-
"top": null,
|
839 |
-
"visibility": null,
|
840 |
-
"width": null
|
841 |
-
}
|
842 |
-
},
|
843 |
-
"901c650e39ea4ddc8148e80f087b40e5": {
|
844 |
-
"model_module": "@jupyter-widgets/base",
|
845 |
-
"model_name": "LayoutModel",
|
846 |
-
"model_module_version": "1.2.0",
|
847 |
-
"state": {
|
848 |
-
"_model_module": "@jupyter-widgets/base",
|
849 |
-
"_model_module_version": "1.2.0",
|
850 |
-
"_model_name": "LayoutModel",
|
851 |
-
"_view_count": null,
|
852 |
-
"_view_module": "@jupyter-widgets/base",
|
853 |
-
"_view_module_version": "1.2.0",
|
854 |
-
"_view_name": "LayoutView",
|
855 |
-
"align_content": null,
|
856 |
-
"align_items": null,
|
857 |
-
"align_self": null,
|
858 |
-
"border": null,
|
859 |
-
"bottom": null,
|
860 |
-
"display": null,
|
861 |
-
"flex": null,
|
862 |
-
"flex_flow": null,
|
863 |
-
"grid_area": null,
|
864 |
-
"grid_auto_columns": null,
|
865 |
-
"grid_auto_flow": null,
|
866 |
-
"grid_auto_rows": null,
|
867 |
-
"grid_column": null,
|
868 |
-
"grid_gap": null,
|
869 |
-
"grid_row": null,
|
870 |
-
"grid_template_areas": null,
|
871 |
-
"grid_template_columns": null,
|
872 |
-
"grid_template_rows": null,
|
873 |
-
"height": null,
|
874 |
-
"justify_content": null,
|
875 |
-
"justify_items": null,
|
876 |
-
"left": null,
|
877 |
-
"margin": null,
|
878 |
-
"max_height": null,
|
879 |
-
"max_width": null,
|
880 |
-
"min_height": null,
|
881 |
-
"min_width": null,
|
882 |
-
"object_fit": null,
|
883 |
-
"object_position": null,
|
884 |
-
"order": null,
|
885 |
-
"overflow": null,
|
886 |
-
"overflow_x": null,
|
887 |
-
"overflow_y": null,
|
888 |
-
"padding": null,
|
889 |
-
"right": null,
|
890 |
-
"top": null,
|
891 |
-
"visibility": null,
|
892 |
-
"width": null
|
893 |
-
}
|
894 |
-
},
|
895 |
-
"71ffe21e8fe04be3ab6bfb4c10ae2403": {
|
896 |
-
"model_module": "@jupyter-widgets/controls",
|
897 |
-
"model_name": "DescriptionStyleModel",
|
898 |
-
"model_module_version": "1.5.0",
|
899 |
-
"state": {
|
900 |
-
"_model_module": "@jupyter-widgets/controls",
|
901 |
-
"_model_module_version": "1.5.0",
|
902 |
-
"_model_name": "DescriptionStyleModel",
|
903 |
-
"_view_count": null,
|
904 |
-
"_view_module": "@jupyter-widgets/base",
|
905 |
-
"_view_module_version": "1.2.0",
|
906 |
-
"_view_name": "StyleView",
|
907 |
-
"description_width": ""
|
908 |
-
}
|
909 |
-
},
|
910 |
-
"a749c4a8500c45c4b083918cac225bc0": {
|
911 |
-
"model_module": "@jupyter-widgets/base",
|
912 |
-
"model_name": "LayoutModel",
|
913 |
-
"model_module_version": "1.2.0",
|
914 |
-
"state": {
|
915 |
-
"_model_module": "@jupyter-widgets/base",
|
916 |
-
"_model_module_version": "1.2.0",
|
917 |
-
"_model_name": "LayoutModel",
|
918 |
-
"_view_count": null,
|
919 |
-
"_view_module": "@jupyter-widgets/base",
|
920 |
-
"_view_module_version": "1.2.0",
|
921 |
-
"_view_name": "LayoutView",
|
922 |
-
"align_content": null,
|
923 |
-
"align_items": null,
|
924 |
-
"align_self": null,
|
925 |
-
"border": null,
|
926 |
-
"bottom": null,
|
927 |
-
"display": null,
|
928 |
-
"flex": null,
|
929 |
-
"flex_flow": null,
|
930 |
-
"grid_area": null,
|
931 |
-
"grid_auto_columns": null,
|
932 |
-
"grid_auto_flow": null,
|
933 |
-
"grid_auto_rows": null,
|
934 |
-
"grid_column": null,
|
935 |
-
"grid_gap": null,
|
936 |
-
"grid_row": null,
|
937 |
-
"grid_template_areas": null,
|
938 |
-
"grid_template_columns": null,
|
939 |
-
"grid_template_rows": null,
|
940 |
-
"height": null,
|
941 |
-
"justify_content": null,
|
942 |
-
"justify_items": null,
|
943 |
-
"left": null,
|
944 |
-
"margin": null,
|
945 |
-
"max_height": null,
|
946 |
-
"max_width": null,
|
947 |
-
"min_height": null,
|
948 |
-
"min_width": null,
|
949 |
-
"object_fit": null,
|
950 |
-
"object_position": null,
|
951 |
-
"order": null,
|
952 |
-
"overflow": null,
|
953 |
-
"overflow_x": null,
|
954 |
-
"overflow_y": null,
|
955 |
-
"padding": null,
|
956 |
-
"right": null,
|
957 |
-
"top": null,
|
958 |
-
"visibility": null,
|
959 |
-
"width": null
|
960 |
-
}
|
961 |
-
},
|
962 |
-
"9182ff55244542aa9f77a7fefa181f49": {
|
963 |
-
"model_module": "@jupyter-widgets/controls",
|
964 |
-
"model_name": "ProgressStyleModel",
|
965 |
-
"model_module_version": "1.5.0",
|
966 |
-
"state": {
|
967 |
-
"_model_module": "@jupyter-widgets/controls",
|
968 |
-
"_model_module_version": "1.5.0",
|
969 |
-
"_model_name": "ProgressStyleModel",
|
970 |
-
"_view_count": null,
|
971 |
-
"_view_module": "@jupyter-widgets/base",
|
972 |
-
"_view_module_version": "1.2.0",
|
973 |
-
"_view_name": "StyleView",
|
974 |
-
"bar_color": null,
|
975 |
-
"description_width": ""
|
976 |
-
}
|
977 |
-
},
|
978 |
-
"a9c504808b7c4b87919dfc976342fe0e": {
|
979 |
-
"model_module": "@jupyter-widgets/base",
|
980 |
-
"model_name": "LayoutModel",
|
981 |
-
"model_module_version": "1.2.0",
|
982 |
-
"state": {
|
983 |
-
"_model_module": "@jupyter-widgets/base",
|
984 |
-
"_model_module_version": "1.2.0",
|
985 |
-
"_model_name": "LayoutModel",
|
986 |
-
"_view_count": null,
|
987 |
-
"_view_module": "@jupyter-widgets/base",
|
988 |
-
"_view_module_version": "1.2.0",
|
989 |
-
"_view_name": "LayoutView",
|
990 |
-
"align_content": null,
|
991 |
-
"align_items": null,
|
992 |
-
"align_self": null,
|
993 |
-
"border": null,
|
994 |
-
"bottom": null,
|
995 |
-
"display": null,
|
996 |
-
"flex": null,
|
997 |
-
"flex_flow": null,
|
998 |
-
"grid_area": null,
|
999 |
-
"grid_auto_columns": null,
|
1000 |
-
"grid_auto_flow": null,
|
1001 |
-
"grid_auto_rows": null,
|
1002 |
-
"grid_column": null,
|
1003 |
-
"grid_gap": null,
|
1004 |
-
"grid_row": null,
|
1005 |
-
"grid_template_areas": null,
|
1006 |
-
"grid_template_columns": null,
|
1007 |
-
"grid_template_rows": null,
|
1008 |
-
"height": null,
|
1009 |
-
"justify_content": null,
|
1010 |
-
"justify_items": null,
|
1011 |
-
"left": null,
|
1012 |
-
"margin": null,
|
1013 |
-
"max_height": null,
|
1014 |
-
"max_width": null,
|
1015 |
-
"min_height": null,
|
1016 |
-
"min_width": null,
|
1017 |
-
"object_fit": null,
|
1018 |
-
"object_position": null,
|
1019 |
-
"order": null,
|
1020 |
-
"overflow": null,
|
1021 |
-
"overflow_x": null,
|
1022 |
-
"overflow_y": null,
|
1023 |
-
"padding": null,
|
1024 |
-
"right": null,
|
1025 |
-
"top": null,
|
1026 |
-
"visibility": null,
|
1027 |
-
"width": null
|
1028 |
-
}
|
1029 |
-
},
|
1030 |
-
"7f6e9e7d12574620a04e3ce7040f40d6": {
|
1031 |
-
"model_module": "@jupyter-widgets/controls",
|
1032 |
-
"model_name": "DescriptionStyleModel",
|
1033 |
-
"model_module_version": "1.5.0",
|
1034 |
-
"state": {
|
1035 |
-
"_model_module": "@jupyter-widgets/controls",
|
1036 |
-
"_model_module_version": "1.5.0",
|
1037 |
-
"_model_name": "DescriptionStyleModel",
|
1038 |
-
"_view_count": null,
|
1039 |
-
"_view_module": "@jupyter-widgets/base",
|
1040 |
-
"_view_module_version": "1.2.0",
|
1041 |
-
"_view_name": "StyleView",
|
1042 |
-
"description_width": ""
|
1043 |
-
}
|
1044 |
-
},
|
1045 |
-
"0028087e124840ce93d36b8bd482bb57": {
|
1046 |
-
"model_module": "@jupyter-widgets/controls",
|
1047 |
-
"model_name": "HBoxModel",
|
1048 |
-
"model_module_version": "1.5.0",
|
1049 |
-
"state": {
|
1050 |
-
"_dom_classes": [],
|
1051 |
-
"_model_module": "@jupyter-widgets/controls",
|
1052 |
-
"_model_module_version": "1.5.0",
|
1053 |
-
"_model_name": "HBoxModel",
|
1054 |
-
"_view_count": null,
|
1055 |
-
"_view_module": "@jupyter-widgets/controls",
|
1056 |
-
"_view_module_version": "1.5.0",
|
1057 |
-
"_view_name": "HBoxView",
|
1058 |
-
"box_style": "",
|
1059 |
-
"children": [
|
1060 |
-
"IPY_MODEL_b1e9160b4b4b45798d9519bdfc9495a8",
|
1061 |
-
"IPY_MODEL_0bc64a9e7911471f87a0d96b1c7f0e92",
|
1062 |
-
"IPY_MODEL_b1c1e8f2fc854d0699cb1db59cfae2a1"
|
1063 |
-
],
|
1064 |
-
"layout": "IPY_MODEL_82d76c4cdcf14a4ba5f34b49e9bd66d8"
|
1065 |
-
}
|
1066 |
-
},
|
1067 |
-
"b1e9160b4b4b45798d9519bdfc9495a8": {
|
1068 |
-
"model_module": "@jupyter-widgets/controls",
|
1069 |
-
"model_name": "HTMLModel",
|
1070 |
-
"model_module_version": "1.5.0",
|
1071 |
-
"state": {
|
1072 |
-
"_dom_classes": [],
|
1073 |
-
"_model_module": "@jupyter-widgets/controls",
|
1074 |
-
"_model_module_version": "1.5.0",
|
1075 |
-
"_model_name": "HTMLModel",
|
1076 |
-
"_view_count": null,
|
1077 |
-
"_view_module": "@jupyter-widgets/controls",
|
1078 |
-
"_view_module_version": "1.5.0",
|
1079 |
-
"_view_name": "HTMLView",
|
1080 |
-
"description": "",
|
1081 |
-
"description_tooltip": null,
|
1082 |
-
"layout": "IPY_MODEL_a39ac82e411b481893061534b82783d6",
|
1083 |
-
"placeholder": "",
|
1084 |
-
"style": "IPY_MODEL_f49d6a8841544fbeb1b3a01826d5d230",
|
1085 |
-
"value": "label_encoder.txt: 100%"
|
1086 |
-
}
|
1087 |
-
},
|
1088 |
-
"0bc64a9e7911471f87a0d96b1c7f0e92": {
|
1089 |
-
"model_module": "@jupyter-widgets/controls",
|
1090 |
-
"model_name": "FloatProgressModel",
|
1091 |
-
"model_module_version": "1.5.0",
|
1092 |
-
"state": {
|
1093 |
-
"_dom_classes": [],
|
1094 |
-
"_model_module": "@jupyter-widgets/controls",
|
1095 |
-
"_model_module_version": "1.5.0",
|
1096 |
-
"_model_name": "FloatProgressModel",
|
1097 |
-
"_view_count": null,
|
1098 |
-
"_view_module": "@jupyter-widgets/controls",
|
1099 |
-
"_view_module_version": "1.5.0",
|
1100 |
-
"_view_name": "ProgressView",
|
1101 |
-
"bar_style": "success",
|
1102 |
-
"description": "",
|
1103 |
-
"description_tooltip": null,
|
1104 |
-
"layout": "IPY_MODEL_8ef83c7b9f49497dbe1cfaa7a4f898b2",
|
1105 |
-
"max": 788,
|
1106 |
-
"min": 0,
|
1107 |
-
"orientation": "horizontal",
|
1108 |
-
"style": "IPY_MODEL_68339024f0bc410c8f1bd95184ff7d0b",
|
1109 |
-
"value": 788
|
1110 |
-
}
|
1111 |
-
},
|
1112 |
-
"b1c1e8f2fc854d0699cb1db59cfae2a1": {
|
1113 |
-
"model_module": "@jupyter-widgets/controls",
|
1114 |
-
"model_name": "HTMLModel",
|
1115 |
-
"model_module_version": "1.5.0",
|
1116 |
-
"state": {
|
1117 |
-
"_dom_classes": [],
|
1118 |
-
"_model_module": "@jupyter-widgets/controls",
|
1119 |
-
"_model_module_version": "1.5.0",
|
1120 |
-
"_model_name": "HTMLModel",
|
1121 |
-
"_view_count": null,
|
1122 |
-
"_view_module": "@jupyter-widgets/controls",
|
1123 |
-
"_view_module_version": "1.5.0",
|
1124 |
-
"_view_name": "HTMLView",
|
1125 |
-
"description": "",
|
1126 |
-
"description_tooltip": null,
|
1127 |
-
"layout": "IPY_MODEL_93516c9e85bb4f82a493be0bcb25120a",
|
1128 |
-
"placeholder": "",
|
1129 |
-
"style": "IPY_MODEL_57b73755ea0246d98995c774e129e422",
|
1130 |
-
"value": " 788/788 [00:00<00:00, 86.7kB/s]"
|
1131 |
-
}
|
1132 |
-
},
|
1133 |
-
"82d76c4cdcf14a4ba5f34b49e9bd66d8": {
|
1134 |
-
"model_module": "@jupyter-widgets/base",
|
1135 |
-
"model_name": "LayoutModel",
|
1136 |
-
"model_module_version": "1.2.0",
|
1137 |
-
"state": {
|
1138 |
-
"_model_module": "@jupyter-widgets/base",
|
1139 |
-
"_model_module_version": "1.2.0",
|
1140 |
-
"_model_name": "LayoutModel",
|
1141 |
-
"_view_count": null,
|
1142 |
-
"_view_module": "@jupyter-widgets/base",
|
1143 |
-
"_view_module_version": "1.2.0",
|
1144 |
-
"_view_name": "LayoutView",
|
1145 |
-
"align_content": null,
|
1146 |
-
"align_items": null,
|
1147 |
-
"align_self": null,
|
1148 |
-
"border": null,
|
1149 |
-
"bottom": null,
|
1150 |
-
"display": null,
|
1151 |
-
"flex": null,
|
1152 |
-
"flex_flow": null,
|
1153 |
-
"grid_area": null,
|
1154 |
-
"grid_auto_columns": null,
|
1155 |
-
"grid_auto_flow": null,
|
1156 |
-
"grid_auto_rows": null,
|
1157 |
-
"grid_column": null,
|
1158 |
-
"grid_gap": null,
|
1159 |
-
"grid_row": null,
|
1160 |
-
"grid_template_areas": null,
|
1161 |
-
"grid_template_columns": null,
|
1162 |
-
"grid_template_rows": null,
|
1163 |
-
"height": null,
|
1164 |
-
"justify_content": null,
|
1165 |
-
"justify_items": null,
|
1166 |
-
"left": null,
|
1167 |
-
"margin": null,
|
1168 |
-
"max_height": null,
|
1169 |
-
"max_width": null,
|
1170 |
-
"min_height": null,
|
1171 |
-
"min_width": null,
|
1172 |
-
"object_fit": null,
|
1173 |
-
"object_position": null,
|
1174 |
-
"order": null,
|
1175 |
-
"overflow": null,
|
1176 |
-
"overflow_x": null,
|
1177 |
-
"overflow_y": null,
|
1178 |
-
"padding": null,
|
1179 |
-
"right": null,
|
1180 |
-
"top": null,
|
1181 |
-
"visibility": null,
|
1182 |
-
"width": null
|
1183 |
-
}
|
1184 |
-
},
|
1185 |
-
"a39ac82e411b481893061534b82783d6": {
|
1186 |
-
"model_module": "@jupyter-widgets/base",
|
1187 |
-
"model_name": "LayoutModel",
|
1188 |
-
"model_module_version": "1.2.0",
|
1189 |
-
"state": {
|
1190 |
-
"_model_module": "@jupyter-widgets/base",
|
1191 |
-
"_model_module_version": "1.2.0",
|
1192 |
-
"_model_name": "LayoutModel",
|
1193 |
-
"_view_count": null,
|
1194 |
-
"_view_module": "@jupyter-widgets/base",
|
1195 |
-
"_view_module_version": "1.2.0",
|
1196 |
-
"_view_name": "LayoutView",
|
1197 |
-
"align_content": null,
|
1198 |
-
"align_items": null,
|
1199 |
-
"align_self": null,
|
1200 |
-
"border": null,
|
1201 |
-
"bottom": null,
|
1202 |
-
"display": null,
|
1203 |
-
"flex": null,
|
1204 |
-
"flex_flow": null,
|
1205 |
-
"grid_area": null,
|
1206 |
-
"grid_auto_columns": null,
|
1207 |
-
"grid_auto_flow": null,
|
1208 |
-
"grid_auto_rows": null,
|
1209 |
-
"grid_column": null,
|
1210 |
-
"grid_gap": null,
|
1211 |
-
"grid_row": null,
|
1212 |
-
"grid_template_areas": null,
|
1213 |
-
"grid_template_columns": null,
|
1214 |
-
"grid_template_rows": null,
|
1215 |
-
"height": null,
|
1216 |
-
"justify_content": null,
|
1217 |
-
"justify_items": null,
|
1218 |
-
"left": null,
|
1219 |
-
"margin": null,
|
1220 |
-
"max_height": null,
|
1221 |
-
"max_width": null,
|
1222 |
-
"min_height": null,
|
1223 |
-
"min_width": null,
|
1224 |
-
"object_fit": null,
|
1225 |
-
"object_position": null,
|
1226 |
-
"order": null,
|
1227 |
-
"overflow": null,
|
1228 |
-
"overflow_x": null,
|
1229 |
-
"overflow_y": null,
|
1230 |
-
"padding": null,
|
1231 |
-
"right": null,
|
1232 |
-
"top": null,
|
1233 |
-
"visibility": null,
|
1234 |
-
"width": null
|
1235 |
-
}
|
1236 |
-
},
|
1237 |
-
"f49d6a8841544fbeb1b3a01826d5d230": {
|
1238 |
-
"model_module": "@jupyter-widgets/controls",
|
1239 |
-
"model_name": "DescriptionStyleModel",
|
1240 |
-
"model_module_version": "1.5.0",
|
1241 |
-
"state": {
|
1242 |
-
"_model_module": "@jupyter-widgets/controls",
|
1243 |
-
"_model_module_version": "1.5.0",
|
1244 |
-
"_model_name": "DescriptionStyleModel",
|
1245 |
-
"_view_count": null,
|
1246 |
-
"_view_module": "@jupyter-widgets/base",
|
1247 |
-
"_view_module_version": "1.2.0",
|
1248 |
-
"_view_name": "StyleView",
|
1249 |
-
"description_width": ""
|
1250 |
-
}
|
1251 |
-
},
|
1252 |
-
"8ef83c7b9f49497dbe1cfaa7a4f898b2": {
|
1253 |
-
"model_module": "@jupyter-widgets/base",
|
1254 |
-
"model_name": "LayoutModel",
|
1255 |
-
"model_module_version": "1.2.0",
|
1256 |
-
"state": {
|
1257 |
-
"_model_module": "@jupyter-widgets/base",
|
1258 |
-
"_model_module_version": "1.2.0",
|
1259 |
-
"_model_name": "LayoutModel",
|
1260 |
-
"_view_count": null,
|
1261 |
-
"_view_module": "@jupyter-widgets/base",
|
1262 |
-
"_view_module_version": "1.2.0",
|
1263 |
-
"_view_name": "LayoutView",
|
1264 |
-
"align_content": null,
|
1265 |
-
"align_items": null,
|
1266 |
-
"align_self": null,
|
1267 |
-
"border": null,
|
1268 |
-
"bottom": null,
|
1269 |
-
"display": null,
|
1270 |
-
"flex": null,
|
1271 |
-
"flex_flow": null,
|
1272 |
-
"grid_area": null,
|
1273 |
-
"grid_auto_columns": null,
|
1274 |
-
"grid_auto_flow": null,
|
1275 |
-
"grid_auto_rows": null,
|
1276 |
-
"grid_column": null,
|
1277 |
-
"grid_gap": null,
|
1278 |
-
"grid_row": null,
|
1279 |
-
"grid_template_areas": null,
|
1280 |
-
"grid_template_columns": null,
|
1281 |
-
"grid_template_rows": null,
|
1282 |
-
"height": null,
|
1283 |
-
"justify_content": null,
|
1284 |
-
"justify_items": null,
|
1285 |
-
"left": null,
|
1286 |
-
"margin": null,
|
1287 |
-
"max_height": null,
|
1288 |
-
"max_width": null,
|
1289 |
-
"min_height": null,
|
1290 |
-
"min_width": null,
|
1291 |
-
"object_fit": null,
|
1292 |
-
"object_position": null,
|
1293 |
-
"order": null,
|
1294 |
-
"overflow": null,
|
1295 |
-
"overflow_x": null,
|
1296 |
-
"overflow_y": null,
|
1297 |
-
"padding": null,
|
1298 |
-
"right": null,
|
1299 |
-
"top": null,
|
1300 |
-
"visibility": null,
|
1301 |
-
"width": null
|
1302 |
-
}
|
1303 |
-
},
|
1304 |
-
"68339024f0bc410c8f1bd95184ff7d0b": {
|
1305 |
-
"model_module": "@jupyter-widgets/controls",
|
1306 |
-
"model_name": "ProgressStyleModel",
|
1307 |
-
"model_module_version": "1.5.0",
|
1308 |
-
"state": {
|
1309 |
-
"_model_module": "@jupyter-widgets/controls",
|
1310 |
-
"_model_module_version": "1.5.0",
|
1311 |
-
"_model_name": "ProgressStyleModel",
|
1312 |
-
"_view_count": null,
|
1313 |
-
"_view_module": "@jupyter-widgets/base",
|
1314 |
-
"_view_module_version": "1.2.0",
|
1315 |
-
"_view_name": "StyleView",
|
1316 |
-
"bar_color": null,
|
1317 |
-
"description_width": ""
|
1318 |
-
}
|
1319 |
-
},
|
1320 |
-
"93516c9e85bb4f82a493be0bcb25120a": {
|
1321 |
-
"model_module": "@jupyter-widgets/base",
|
1322 |
-
"model_name": "LayoutModel",
|
1323 |
-
"model_module_version": "1.2.0",
|
1324 |
-
"state": {
|
1325 |
-
"_model_module": "@jupyter-widgets/base",
|
1326 |
-
"_model_module_version": "1.2.0",
|
1327 |
-
"_model_name": "LayoutModel",
|
1328 |
-
"_view_count": null,
|
1329 |
-
"_view_module": "@jupyter-widgets/base",
|
1330 |
-
"_view_module_version": "1.2.0",
|
1331 |
-
"_view_name": "LayoutView",
|
1332 |
-
"align_content": null,
|
1333 |
-
"align_items": null,
|
1334 |
-
"align_self": null,
|
1335 |
-
"border": null,
|
1336 |
-
"bottom": null,
|
1337 |
-
"display": null,
|
1338 |
-
"flex": null,
|
1339 |
-
"flex_flow": null,
|
1340 |
-
"grid_area": null,
|
1341 |
-
"grid_auto_columns": null,
|
1342 |
-
"grid_auto_flow": null,
|
1343 |
-
"grid_auto_rows": null,
|
1344 |
-
"grid_column": null,
|
1345 |
-
"grid_gap": null,
|
1346 |
-
"grid_row": null,
|
1347 |
-
"grid_template_areas": null,
|
1348 |
-
"grid_template_columns": null,
|
1349 |
-
"grid_template_rows": null,
|
1350 |
-
"height": null,
|
1351 |
-
"justify_content": null,
|
1352 |
-
"justify_items": null,
|
1353 |
-
"left": null,
|
1354 |
-
"margin": null,
|
1355 |
-
"max_height": null,
|
1356 |
-
"max_width": null,
|
1357 |
-
"min_height": null,
|
1358 |
-
"min_width": null,
|
1359 |
-
"object_fit": null,
|
1360 |
-
"object_position": null,
|
1361 |
-
"order": null,
|
1362 |
-
"overflow": null,
|
1363 |
-
"overflow_x": null,
|
1364 |
-
"overflow_y": null,
|
1365 |
-
"padding": null,
|
1366 |
-
"right": null,
|
1367 |
-
"top": null,
|
1368 |
-
"visibility": null,
|
1369 |
-
"width": null
|
1370 |
-
}
|
1371 |
-
},
|
1372 |
-
"57b73755ea0246d98995c774e129e422": {
|
1373 |
-
"model_module": "@jupyter-widgets/controls",
|
1374 |
-
"model_name": "DescriptionStyleModel",
|
1375 |
-
"model_module_version": "1.5.0",
|
1376 |
-
"state": {
|
1377 |
-
"_model_module": "@jupyter-widgets/controls",
|
1378 |
-
"_model_module_version": "1.5.0",
|
1379 |
-
"_model_name": "DescriptionStyleModel",
|
1380 |
-
"_view_count": null,
|
1381 |
-
"_view_module": "@jupyter-widgets/base",
|
1382 |
-
"_view_module_version": "1.2.0",
|
1383 |
-
"_view_name": "StyleView",
|
1384 |
-
"description_width": ""
|
1385 |
-
}
|
1386 |
-
}
|
1387 |
-
}
|
1388 |
-
}
|
1389 |
-
},
|
1390 |
-
"cells": [
|
1391 |
-
{
|
1392 |
-
"cell_type": "code",
|
1393 |
-
"execution_count": 1,
|
1394 |
-
"metadata": {
|
1395 |
-
"colab": {
|
1396 |
-
"base_uri": "https://localhost:8080/"
|
1397 |
-
},
|
1398 |
-
"id": "gB5y6aC-H5_R",
|
1399 |
-
"outputId": "3331d670-461e-4aba-eb3d-6f28d3c66377"
|
1400 |
-
},
|
1401 |
-
"outputs": [
|
1402 |
-
{
|
1403 |
-
"output_type": "stream",
|
1404 |
-
"name": "stdout",
|
1405 |
-
"text": [
|
1406 |
-
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m174.3/174.3 kB\u001b[0m \u001b[31m4.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
1407 |
-
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m44.3/44.3 kB\u001b[0m \u001b[31m2.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
1408 |
-
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3.3/3.3 MB\u001b[0m \u001b[31m59.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
1409 |
-
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m363.4/363.4 MB\u001b[0m \u001b[31m3.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
1410 |
-
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m13.8/13.8 MB\u001b[0m \u001b[31m101.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
1411 |
-
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m24.6/24.6 MB\u001b[0m \u001b[31m92.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
1412 |
-
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m883.7/883.7 kB\u001b[0m \u001b[31m57.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
1413 |
-
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m664.8/664.8 MB\u001b[0m \u001b[31m2.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
1414 |
-
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m211.5/211.5 MB\u001b[0m \u001b[31m5.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
1415 |
-
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m56.3/56.3 MB\u001b[0m \u001b[31m12.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
1416 |
-
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m127.9/127.9 MB\u001b[0m \u001b[31m7.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
1417 |
-
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m207.5/207.5 MB\u001b[0m \u001b[31m5.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
1418 |
-
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m21.1/21.1 MB\u001b[0m \u001b[31m84.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
1419 |
-
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m9.9/9.9 MB\u001b[0m \u001b[31m93.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
1420 |
-
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m864.1/864.1 kB\u001b[0m \u001b[31m42.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
1421 |
-
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m6.9/6.9 MB\u001b[0m \u001b[31m132.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
1422 |
-
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m79.1/79.1 kB\u001b[0m \u001b[31m7.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
1423 |
-
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m118.3/118.3 kB\u001b[0m \u001b[31m11.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
1424 |
-
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m739.1/739.1 kB\u001b[0m \u001b[31m53.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
1425 |
-
"\u001b[?25h"
|
1426 |
-
]
|
1427 |
-
}
|
1428 |
-
],
|
1429 |
-
"source": [
|
1430 |
-
"# Install needed libraries (run this cell first!)\n",
|
1431 |
-
"!pip install --quiet yt-dlp ffmpeg-python torch torchaudio transformers streamlit speechbrain\n"
|
1432 |
-
]
|
1433 |
-
},
|
1434 |
-
{
|
1435 |
-
"cell_type": "code",
|
1436 |
-
"source": [
|
1437 |
-
"import os\n",
|
1438 |
-
"import subprocess\n",
|
1439 |
-
"import torchaudio\n",
|
1440 |
-
"import torch\n",
|
1441 |
-
"from speechbrain.pretrained import EncoderClassifier\n",
|
1442 |
-
"import yt_dlp\n"
|
1443 |
-
],
|
1444 |
-
"metadata": {
|
1445 |
-
"colab": {
|
1446 |
-
"base_uri": "https://localhost:8080/"
|
1447 |
-
},
|
1448 |
-
"id": "BDKT_c4rI07R",
|
1449 |
-
"outputId": "8083d2c5-eade-4424-db57-a640ce85bcb8"
|
1450 |
-
},
|
1451 |
-
"execution_count": 5,
|
1452 |
-
"outputs": [
|
1453 |
-
{
|
1454 |
-
"output_type": "stream",
|
1455 |
-
"name": "stderr",
|
1456 |
-
"text": [
|
1457 |
-
"DEBUG:speechbrain.utils.checkpoints:Registered checkpoint save hook for _speechbrain_save\n",
|
1458 |
-
"DEBUG:speechbrain.utils.checkpoints:Registered checkpoint load hook for _speechbrain_load\n",
|
1459 |
-
"DEBUG:speechbrain.utils.checkpoints:Registered checkpoint save hook for save\n",
|
1460 |
-
"DEBUG:speechbrain.utils.checkpoints:Registered checkpoint load hook for load\n",
|
1461 |
-
"DEBUG:speechbrain.utils.checkpoints:Registered checkpoint save hook for _save\n",
|
1462 |
-
"DEBUG:speechbrain.utils.checkpoints:Registered checkpoint load hook for _recover\n",
|
1463 |
-
"<ipython-input-5-0f12fb55d26c>:5: UserWarning: Module 'speechbrain.pretrained' was deprecated, redirecting to 'speechbrain.inference'. Please update your script. This is a change from SpeechBrain 1.0. See: https://github.com/speechbrain/speechbrain/releases/tag/v1.0.0\n",
|
1464 |
-
" from speechbrain.pretrained import EncoderClassifier\n"
|
1465 |
-
]
|
1466 |
-
}
|
1467 |
-
]
|
1468 |
-
},
|
1469 |
-
{
|
1470 |
-
"cell_type": "code",
|
1471 |
-
"source": [
|
1472 |
-
"# Paste your video URL here (YouTube or direct MP4 link)\n",
|
1473 |
-
"VIDEO_URL = \"https://youtu.be/DDjWTWHHkpk?si=oIj6Fuy8Hg2E8U_l\" # Example: Replace with your actual link!\n"
|
1474 |
-
],
|
1475 |
-
"metadata": {
|
1476 |
-
"id": "dco77Q2CI45K"
|
1477 |
-
},
|
1478 |
-
"execution_count": 2,
|
1479 |
-
"outputs": []
|
1480 |
-
},
|
1481 |
-
{
|
1482 |
-
"cell_type": "code",
|
1483 |
-
"source": [
|
1484 |
-
"def download_video(url, out_path=\"input_video.mp4\"):\n",
|
1485 |
-
" \"\"\"\n",
|
1486 |
-
" Downloads a video from YouTube or direct MP4 link.\n",
|
1487 |
-
" Returns the filename of the downloaded video.\n",
|
1488 |
-
" \"\"\"\n",
|
1489 |
-
" # If it's a YouTube link, use yt-dlp\n",
|
1490 |
-
" if \"youtube.com\" in url or \"youtu.be\" in url:\n",
|
1491 |
-
" ydl_opts = {'outtmpl': out_path}\n",
|
1492 |
-
" with yt_dlp.YoutubeDL(ydl_opts) as ydl:\n",
|
1493 |
-
" ydl.download([url])\n",
|
1494 |
-
" else:\n",
|
1495 |
-
" # For direct links, use wget/curl fallback\n",
|
1496 |
-
" os.system(f\"wget -O {out_path} {url}\")\n",
|
1497 |
-
" return out_path\n",
|
1498 |
-
"\n",
|
1499 |
-
"video_file = download_video(VIDEO_URL)\n",
|
1500 |
-
"print(f\"Downloaded video: {video_file}\")\n"
|
1501 |
-
],
|
1502 |
-
"metadata": {
|
1503 |
-
"colab": {
|
1504 |
-
"base_uri": "https://localhost:8080/"
|
1505 |
-
},
|
1506 |
-
"id": "RpWlsFnUJECZ",
|
1507 |
-
"outputId": "c8795ebf-01de-40ae-c80c-02cfa09a1357"
|
1508 |
-
},
|
1509 |
-
"execution_count": 6,
|
1510 |
-
"outputs": [
|
1511 |
-
{
|
1512 |
-
"output_type": "stream",
|
1513 |
-
"name": "stdout",
|
1514 |
-
"text": [
|
1515 |
-
"[youtube] Extracting URL: https://youtu.be/DDjWTWHHkpk?si=oIj6Fuy8Hg2E8U_l\n",
|
1516 |
-
"[youtube] DDjWTWHHkpk: Downloading webpage\n",
|
1517 |
-
"[youtube] DDjWTWHHkpk: Downloading tv client config\n",
|
1518 |
-
"[youtube] DDjWTWHHkpk: Downloading player f203bbc8-main\n",
|
1519 |
-
"[youtube] DDjWTWHHkpk: Downloading tv player API JSON\n",
|
1520 |
-
"[youtube] DDjWTWHHkpk: Downloading ios player API JSON\n",
|
1521 |
-
"[youtube] DDjWTWHHkpk: Downloading m3u8 information\n",
|
1522 |
-
"[info] DDjWTWHHkpk: Downloading 1 format(s): 399+251\n",
|
1523 |
-
"[download] Destination: input_video.mp4.f399.mp4\n",
|
1524 |
-
"[download] 100% of 62.45MiB in 00:00:01 at 31.78MiB/s \n",
|
1525 |
-
"[download] Destination: input_video.mp4.f251.webm\n",
|
1526 |
-
"[download] 100% of 4.57MiB in 00:00:00 at 9.99MiB/s \n",
|
1527 |
-
"[Merger] Merging formats into \"input_video.mp4.webm\"\n",
|
1528 |
-
"Deleting original file input_video.mp4.f399.mp4 (pass -k to keep)\n",
|
1529 |
-
"Deleting original file input_video.mp4.f251.webm (pass -k to keep)\n",
|
1530 |
-
"Downloaded video: input_video.mp4\n"
|
1531 |
-
]
|
1532 |
-
}
|
1533 |
-
]
|
1534 |
-
},
|
1535 |
-
{
|
1536 |
-
"cell_type": "code",
|
1537 |
-
"source": [
|
1538 |
-
"def extract_audio(video_path, audio_path=\"audio.wav\"):\n",
|
1539 |
-
" \"\"\"\n",
|
1540 |
-
" Extracts audio from a video file using ffmpeg.\n",
|
1541 |
-
" Returns the filename of the audio file.\n",
|
1542 |
-
" \"\"\"\n",
|
1543 |
-
" # Remove if already exists\n",
|
1544 |
-
" if os.path.exists(audio_path):\n",
|
1545 |
-
" os.remove(audio_path)\n",
|
1546 |
-
" # Extract audio with ffmpeg\n",
|
1547 |
-
" cmd = f\"ffmpeg -y -i {video_path} -ar 16000 -ac 1 -vn {audio_path}\"\n",
|
1548 |
-
" subprocess.call(cmd, shell=True)\n",
|
1549 |
-
" return audio_path\n",
|
1550 |
-
"\n",
|
1551 |
-
"audio_file = extract_audio(video_file)\n",
|
1552 |
-
"print(f\"Extracted audio file: {audio_file}\")\n"
|
1553 |
-
],
|
1554 |
-
"metadata": {
|
1555 |
-
"colab": {
|
1556 |
-
"base_uri": "https://localhost:8080/"
|
1557 |
-
},
|
1558 |
-
"id": "4a40jh5sJLMR",
|
1559 |
-
"outputId": "9756fbf1-2666-4271-bfd4-78de81d92b27"
|
1560 |
-
},
|
1561 |
-
"execution_count": 7,
|
1562 |
-
"outputs": [
|
1563 |
-
{
|
1564 |
-
"output_type": "stream",
|
1565 |
-
"name": "stdout",
|
1566 |
-
"text": [
|
1567 |
-
"Extracted audio file: audio.wav\n"
|
1568 |
-
]
|
1569 |
-
}
|
1570 |
-
]
|
1571 |
-
},
|
1572 |
-
{
|
1573 |
-
"cell_type": "code",
|
1574 |
-
"source": [
|
1575 |
-
"def extract_audio(video_path, audio_path=\"/content/audio.wav\"):\n",
|
1576 |
-
" \"\"\"\n",
|
1577 |
-
" Extracts audio from a video file using ffmpeg.\n",
|
1578 |
-
" Returns the filename of the audio file.\n",
|
1579 |
-
" \"\"\"\n",
|
1580 |
-
" # Remove if already exists\n",
|
1581 |
-
" if os.path.exists(audio_path):\n",
|
1582 |
-
" os.remove(audio_path)\n",
|
1583 |
-
" # Extract audio with ffmpeg\n",
|
1584 |
-
" cmd = f\"ffmpeg -y -i {video_path} -ar 16000 -ac 1 -vn {audio_path}\"\n",
|
1585 |
-
" # Use subprocess.run to capture output and check the return code\n",
|
1586 |
-
" result = subprocess.run(cmd, shell=True, capture_output=True, text=True)\n",
|
1587 |
-
"\n",
|
1588 |
-
" if result.returncode != 0:\n",
|
1589 |
-
" print(f\"FFmpeg command failed with error code {result.returncode}\")\n",
|
1590 |
-
" print(\"FFmpeg stderr:\")\n",
|
1591 |
-
" print(result.stderr)\n",
|
1592 |
-
" # Optionally, raise an error or exit if audio extraction fails\n",
|
1593 |
-
" raise RuntimeError(f\"Failed to extract audio using FFmpeg. See stderr above.\")\n",
|
1594 |
-
" else:\n",
|
1595 |
-
" print(\"FFmpeg stdout:\")\n",
|
1596 |
-
" print(result.stdout)\n",
|
1597 |
-
" print(\"FFmpeg stderr:\")\n",
|
1598 |
-
" print(result.stderr) # ffmpeg often outputs info/warnings to stderr\n",
|
1599 |
-
"\n",
|
1600 |
-
" # Check if the audio file was actually created\n",
|
1601 |
-
" if not os.path.exists(audio_path):\n",
|
1602 |
-
" raise FileNotFoundError(f\"Audio file '{audio_path}' was not created after FFmpeg execution.\")\n",
|
1603 |
-
"\n",
|
1604 |
-
" return audio_path"
|
1605 |
-
],
|
1606 |
-
"metadata": {
|
1607 |
-
"id": "ID_TzSsMJsqF"
|
1608 |
-
},
|
1609 |
-
"execution_count": 8,
|
1610 |
-
"outputs": []
|
1611 |
-
},
|
1612 |
-
{
|
1613 |
-
"cell_type": "code",
|
1614 |
-
"source": [
|
1615 |
-
"# Download the pre-trained English accent classifier (SpeechBrain)\n",
|
1616 |
-
"accent_model = EncoderClassifier.from_hparams(\n",
|
1617 |
-
" source=\"speechbrain/lang-id-commonlanguage_ecapa\",\n",
|
1618 |
-
" savedir=\"tmp_accent_model\"\n",
|
1619 |
-
")\n"
|
1620 |
-
],
|
1621 |
-
"metadata": {
|
1622 |
-
"colab": {
|
1623 |
-
"base_uri": "https://localhost:8080/",
|
1624 |
-
"height": 599,
|
1625 |
-
"referenced_widgets": [
|
1626 |
-
"025b845ba49e423cbfc757252db02381",
|
1627 |
-
"e29ef8d387a94e6990343111c600d40f",
|
1628 |
-
"bd085d627a404aac90bb6336f74d22a9",
|
1629 |
-
"06c62bd2fcc346a197c3579d00ca0d44",
|
1630 |
-
"df3990918f424c60be35b4c5be90ac34",
|
1631 |
-
"3c88eea7ce64430e94e998a81463143e",
|
1632 |
-
"0f38dc6f89064ec49950502e32a5cc53",
|
1633 |
-
"f6d0a0357ac048d9ad5ef31056fb65a1",
|
1634 |
-
"a570c3b7f01a4906a51eff36d264bb26",
|
1635 |
-
"4e352cff53fa49069d0131578fd3248d",
|
1636 |
-
"2ca94275b52b488fa7755de3c7b03216",
|
1637 |
-
"d7a05ee4c7c24eacbddf57ab6644639b",
|
1638 |
-
"9e2406e1e42d42068d99c706484bab9a",
|
1639 |
-
"2d49939f1d264b59906278bf4939ab2a",
|
1640 |
-
"87a3a050b04e4e5b941951780926d36c",
|
1641 |
-
"f0d5a89ad850448abcd506d6de86fff9",
|
1642 |
-
"16ccf523e9c24390ba654e282241831d",
|
1643 |
-
"25da015c20f8426db38b3853245b37a4",
|
1644 |
-
"77c6272fc49448529d7a7a919b1cc418",
|
1645 |
-
"a9c2643b4c3f4af7b54b9c3940377519",
|
1646 |
-
"75b859dc0f5642408cf318d6583a8da3",
|
1647 |
-
"424c140f22c142988c5e95114c4680d7",
|
1648 |
-
"a0ae653cdf364d528ff132a48c1020c4",
|
1649 |
-
"353f33d613d34b13944aaca5017752e1",
|
1650 |
-
"bb24cf37e9d948bb81527968af1194c9",
|
1651 |
-
"c2e2a5f07c594707a215a3f3c5e673b9",
|
1652 |
-
"ae843746277c43e5bbe68390ad8ea887",
|
1653 |
-
"901c650e39ea4ddc8148e80f087b40e5",
|
1654 |
-
"71ffe21e8fe04be3ab6bfb4c10ae2403",
|
1655 |
-
"a749c4a8500c45c4b083918cac225bc0",
|
1656 |
-
"9182ff55244542aa9f77a7fefa181f49",
|
1657 |
-
"a9c504808b7c4b87919dfc976342fe0e",
|
1658 |
-
"7f6e9e7d12574620a04e3ce7040f40d6",
|
1659 |
-
"0028087e124840ce93d36b8bd482bb57",
|
1660 |
-
"b1e9160b4b4b45798d9519bdfc9495a8",
|
1661 |
-
"0bc64a9e7911471f87a0d96b1c7f0e92",
|
1662 |
-
"b1c1e8f2fc854d0699cb1db59cfae2a1",
|
1663 |
-
"82d76c4cdcf14a4ba5f34b49e9bd66d8",
|
1664 |
-
"a39ac82e411b481893061534b82783d6",
|
1665 |
-
"f49d6a8841544fbeb1b3a01826d5d230",
|
1666 |
-
"8ef83c7b9f49497dbe1cfaa7a4f898b2",
|
1667 |
-
"68339024f0bc410c8f1bd95184ff7d0b",
|
1668 |
-
"93516c9e85bb4f82a493be0bcb25120a",
|
1669 |
-
"57b73755ea0246d98995c774e129e422"
|
1670 |
-
]
|
1671 |
-
},
|
1672 |
-
"id": "NioBBuqiJSyA",
|
1673 |
-
"outputId": "01d37290-1a05-42d0-b74c-587eb8a71885"
|
1674 |
-
},
|
1675 |
-
"execution_count": 9,
|
1676 |
-
"outputs": [
|
1677 |
-
{
|
1678 |
-
"output_type": "stream",
|
1679 |
-
"name": "stderr",
|
1680 |
-
"text": [
|
1681 |
-
"INFO:speechbrain.utils.fetching:Fetch hyperparams.yaml: Fetching from HuggingFace Hub 'speechbrain/lang-id-commonlanguage_ecapa' if not cached\n"
|
1682 |
-
]
|
1683 |
-
},
|
1684 |
-
{
|
1685 |
-
"output_type": "display_data",
|
1686 |
-
"data": {
|
1687 |
-
"text/plain": [
|
1688 |
-
"hyperparams.yaml: 0%| | 0.00/1.67k [00:00<?, ?B/s]"
|
1689 |
-
],
|
1690 |
-
"application/vnd.jupyter.widget-view+json": {
|
1691 |
-
"version_major": 2,
|
1692 |
-
"version_minor": 0,
|
1693 |
-
"model_id": "025b845ba49e423cbfc757252db02381"
|
1694 |
-
}
|
1695 |
-
},
|
1696 |
-
"metadata": {}
|
1697 |
-
},
|
1698 |
-
{
|
1699 |
-
"output_type": "stream",
|
1700 |
-
"name": "stderr",
|
1701 |
-
"text": [
|
1702 |
-
"DEBUG:speechbrain.utils.fetching:Fetch: Local file found, creating symlink '/root/.cache/huggingface/hub/models--speechbrain--lang-id-commonlanguage_ecapa/snapshots/9d809a7e1fdf48afa53e1b41ee8ae0af9ce46308/hyperparams.yaml' -> '/content/tmp_accent_model/hyperparams.yaml'\n",
|
1703 |
-
"INFO:speechbrain.utils.fetching:Fetch custom.py: Fetching from HuggingFace Hub 'speechbrain/lang-id-commonlanguage_ecapa' if not cached\n",
|
1704 |
-
"DEBUG:speechbrain.utils.checkpoints:Registered checkpoint save hook for _save\n",
|
1705 |
-
"DEBUG:speechbrain.utils.checkpoints:Registered checkpoint load hook for _load\n",
|
1706 |
-
"DEBUG:speechbrain.utils.checkpoints:Registered parameter transfer hook for _load\n",
|
1707 |
-
"/usr/local/lib/python3.11/dist-packages/speechbrain/utils/autocast.py:188: FutureWarning: `torch.cuda.amp.custom_fwd(args...)` is deprecated. Please use `torch.amp.custom_fwd(args..., device_type='cuda')` instead.\n",
|
1708 |
-
" wrapped_fwd = torch.cuda.amp.custom_fwd(fwd, cast_inputs=cast_inputs)\n",
|
1709 |
-
"DEBUG:speechbrain.utils.checkpoints:Registered checkpoint save hook for save\n",
|
1710 |
-
"DEBUG:speechbrain.utils.checkpoints:Registered checkpoint load hook for load_if_possible\n",
|
1711 |
-
"DEBUG:speechbrain.utils.parameter_transfer:Collecting files (or symlinks) for pretraining in tmp_accent_model.\n",
|
1712 |
-
"INFO:speechbrain.utils.fetching:Fetch embedding_model.ckpt: Fetching from HuggingFace Hub 'speechbrain/lang-id-commonlanguage_ecapa' if not cached\n"
|
1713 |
-
]
|
1714 |
-
},
|
1715 |
-
{
|
1716 |
-
"output_type": "display_data",
|
1717 |
-
"data": {
|
1718 |
-
"text/plain": [
|
1719 |
-
"embedding_model.ckpt: 0%| | 0.00/83.3M [00:00<?, ?B/s]"
|
1720 |
-
],
|
1721 |
-
"application/vnd.jupyter.widget-view+json": {
|
1722 |
-
"version_major": 2,
|
1723 |
-
"version_minor": 0,
|
1724 |
-
"model_id": "d7a05ee4c7c24eacbddf57ab6644639b"
|
1725 |
-
}
|
1726 |
-
},
|
1727 |
-
"metadata": {}
|
1728 |
-
},
|
1729 |
-
{
|
1730 |
-
"output_type": "stream",
|
1731 |
-
"name": "stderr",
|
1732 |
-
"text": [
|
1733 |
-
"DEBUG:speechbrain.utils.fetching:Fetch: Local file found, creating symlink '/root/.cache/huggingface/hub/models--speechbrain--lang-id-commonlanguage_ecapa/snapshots/9d809a7e1fdf48afa53e1b41ee8ae0af9ce46308/embedding_model.ckpt' -> '/content/tmp_accent_model/embedding_model.ckpt'\n",
|
1734 |
-
"DEBUG:speechbrain.utils.parameter_transfer:Set local path in self.paths[\"embedding_model\"] = /content/tmp_accent_model/embedding_model.ckpt\n",
|
1735 |
-
"INFO:speechbrain.utils.fetching:Fetch classifier.ckpt: Fetching from HuggingFace Hub 'speechbrain/lang-id-commonlanguage_ecapa' if not cached\n"
|
1736 |
-
]
|
1737 |
-
},
|
1738 |
-
{
|
1739 |
-
"output_type": "display_data",
|
1740 |
-
"data": {
|
1741 |
-
"text/plain": [
|
1742 |
-
"classifier.ckpt: 0%| | 0.00/35.4k [00:00<?, ?B/s]"
|
1743 |
-
],
|
1744 |
-
"application/vnd.jupyter.widget-view+json": {
|
1745 |
-
"version_major": 2,
|
1746 |
-
"version_minor": 0,
|
1747 |
-
"model_id": "a0ae653cdf364d528ff132a48c1020c4"
|
1748 |
-
}
|
1749 |
-
},
|
1750 |
-
"metadata": {}
|
1751 |
-
},
|
1752 |
-
{
|
1753 |
-
"output_type": "stream",
|
1754 |
-
"name": "stderr",
|
1755 |
-
"text": [
|
1756 |
-
"DEBUG:speechbrain.utils.fetching:Fetch: Local file found, creating symlink '/root/.cache/huggingface/hub/models--speechbrain--lang-id-commonlanguage_ecapa/snapshots/9d809a7e1fdf48afa53e1b41ee8ae0af9ce46308/classifier.ckpt' -> '/content/tmp_accent_model/classifier.ckpt'\n",
|
1757 |
-
"DEBUG:speechbrain.utils.parameter_transfer:Set local path in self.paths[\"classifier\"] = /content/tmp_accent_model/classifier.ckpt\n",
|
1758 |
-
"INFO:speechbrain.utils.fetching:Fetch label_encoder.txt: Fetching from HuggingFace Hub 'speechbrain/lang-id-commonlanguage_ecapa' if not cached\n"
|
1759 |
-
]
|
1760 |
-
},
|
1761 |
-
{
|
1762 |
-
"output_type": "display_data",
|
1763 |
-
"data": {
|
1764 |
-
"text/plain": [
|
1765 |
-
"label_encoder.txt: 0%| | 0.00/788 [00:00<?, ?B/s]"
|
1766 |
-
],
|
1767 |
-
"application/vnd.jupyter.widget-view+json": {
|
1768 |
-
"version_major": 2,
|
1769 |
-
"version_minor": 0,
|
1770 |
-
"model_id": "0028087e124840ce93d36b8bd482bb57"
|
1771 |
-
}
|
1772 |
-
},
|
1773 |
-
"metadata": {}
|
1774 |
-
},
|
1775 |
-
{
|
1776 |
-
"output_type": "stream",
|
1777 |
-
"name": "stderr",
|
1778 |
-
"text": [
|
1779 |
-
"DEBUG:speechbrain.utils.fetching:Fetch: Local file found, creating symlink '/root/.cache/huggingface/hub/models--speechbrain--lang-id-commonlanguage_ecapa/snapshots/9d809a7e1fdf48afa53e1b41ee8ae0af9ce46308/label_encoder.txt' -> '/content/tmp_accent_model/label_encoder.ckpt'\n",
|
1780 |
-
"DEBUG:speechbrain.utils.parameter_transfer:Set local path in self.paths[\"label_encoder\"] = /content/tmp_accent_model/label_encoder.ckpt\n",
|
1781 |
-
"INFO:speechbrain.utils.parameter_transfer:Loading pretrained files for: embedding_model, classifier, label_encoder\n",
|
1782 |
-
"DEBUG:speechbrain.utils.parameter_transfer:Redirecting (loading from local path): embedding_model -> /content/tmp_accent_model/embedding_model.ckpt\n",
|
1783 |
-
"DEBUG:speechbrain.utils.parameter_transfer:Redirecting (loading from local path): classifier -> /content/tmp_accent_model/classifier.ckpt\n",
|
1784 |
-
"DEBUG:speechbrain.utils.parameter_transfer:Redirecting (loading from local path): label_encoder -> /content/tmp_accent_model/label_encoder.ckpt\n",
|
1785 |
-
"DEBUG:speechbrain.dataio.encoder:Loaded categorical encoding from /content/tmp_accent_model/label_encoder.ckpt\n"
|
1786 |
-
]
|
1787 |
-
}
|
1788 |
-
]
|
1789 |
-
},
|
1790 |
-
{
|
1791 |
-
"cell_type": "markdown",
|
1792 |
-
"source": [
|
1793 |
-
"Used to Debuging the code"
|
1794 |
-
],
|
1795 |
-
"metadata": {
|
1796 |
-
"id": "Tu9Wo4k6K-EK"
|
1797 |
-
}
|
1798 |
-
},
|
1799 |
-
{
|
1800 |
-
"cell_type": "code",
|
1801 |
-
"source": [
|
1802 |
-
"# List the files to see if input_video.mp4 is present\n",
|
1803 |
-
"import os\n",
|
1804 |
-
"print(os.listdir('.'))\n"
|
1805 |
-
],
|
1806 |
-
"metadata": {
|
1807 |
-
"colab": {
|
1808 |
-
"base_uri": "https://localhost:8080/"
|
1809 |
-
},
|
1810 |
-
"id": "iuY4MTUmKDmx",
|
1811 |
-
"outputId": "e325dbb9-3e01-4e17-a832-3180a8c809e3"
|
1812 |
-
},
|
1813 |
-
"execution_count": 10,
|
1814 |
-
"outputs": [
|
1815 |
-
{
|
1816 |
-
"output_type": "stream",
|
1817 |
-
"name": "stdout",
|
1818 |
-
"text": [
|
1819 |
-
"['.config', 'tmp_accent_model', 'input_video.mp4.webm', 'sample_data']\n"
|
1820 |
-
]
|
1821 |
-
}
|
1822 |
-
]
|
1823 |
-
},
|
1824 |
-
{
|
1825 |
-
"cell_type": "markdown",
|
1826 |
-
"source": [
|
1827 |
-
"TO check the debug file path"
|
1828 |
-
],
|
1829 |
-
"metadata": {
|
1830 |
-
"id": "H2pjikAiLCqM"
|
1831 |
-
}
|
1832 |
-
},
|
1833 |
-
{
|
1834 |
-
"cell_type": "code",
|
1835 |
-
"source": [
|
1836 |
-
"# Try extracting audio again, but print output to check for errors\n",
|
1837 |
-
"video_path = \"/content/input_video.mp4.webm\" # or whatever your filename is!\n",
|
1838 |
-
"audio_path = \"audio.wav\"\n",
|
1839 |
-
"\n",
|
1840 |
-
"os.system(f\"ffmpeg -y -i {video_path} -ar 16000 -ac 1 -vn {audio_path}\")\n",
|
1841 |
-
"\n",
|
1842 |
-
"# See if audio.wav was created\n",
|
1843 |
-
"print(os.listdir('.'))\n"
|
1844 |
-
],
|
1845 |
-
"metadata": {
|
1846 |
-
"colab": {
|
1847 |
-
"base_uri": "https://localhost:8080/"
|
1848 |
-
},
|
1849 |
-
"id": "_5huLKQoKMec",
|
1850 |
-
"outputId": "fca4a365-4745-46f0-cf29-80f754af6c59"
|
1851 |
-
},
|
1852 |
-
"execution_count": 11,
|
1853 |
-
"outputs": [
|
1854 |
-
{
|
1855 |
-
"output_type": "stream",
|
1856 |
-
"name": "stdout",
|
1857 |
-
"text": [
|
1858 |
-
"['.config', 'tmp_accent_model', 'input_video.mp4.webm', 'audio.wav', 'sample_data']\n"
|
1859 |
-
]
|
1860 |
-
}
|
1861 |
-
]
|
1862 |
-
},
|
1863 |
-
{
|
1864 |
-
"cell_type": "markdown",
|
1865 |
-
"source": [
|
1866 |
-
"Check the Size of the file"
|
1867 |
-
],
|
1868 |
-
"metadata": {
|
1869 |
-
"id": "6tbUtgFDLGQq"
|
1870 |
-
}
|
1871 |
-
},
|
1872 |
-
{
|
1873 |
-
"cell_type": "code",
|
1874 |
-
"source": [
|
1875 |
-
"# Check if the file now exists and get its size\n",
|
1876 |
-
"import os\n",
|
1877 |
-
"print(\"audio.wav exists:\", os.path.exists(audio_path))\n",
|
1878 |
-
"if os.path.exists(audio_path):\n",
|
1879 |
-
" print(\"audio.wav size (bytes):\", os.path.getsize(audio_path))\n"
|
1880 |
-
],
|
1881 |
-
"metadata": {
|
1882 |
-
"colab": {
|
1883 |
-
"base_uri": "https://localhost:8080/"
|
1884 |
-
},
|
1885 |
-
"id": "dnyXSxAmKZN2",
|
1886 |
-
"outputId": "9616b8da-62c3-4a77-8983-16a193f7ee0f"
|
1887 |
-
},
|
1888 |
-
"execution_count": 12,
|
1889 |
-
"outputs": [
|
1890 |
-
{
|
1891 |
-
"output_type": "stream",
|
1892 |
-
"name": "stdout",
|
1893 |
-
"text": [
|
1894 |
-
"audio.wav exists: True\n",
|
1895 |
-
"audio.wav size (bytes): 9308494\n"
|
1896 |
-
]
|
1897 |
-
}
|
1898 |
-
]
|
1899 |
-
},
|
1900 |
-
{
|
1901 |
-
"cell_type": "code",
|
1902 |
-
"source": [
|
1903 |
-
"# Load the audio file (must be 16kHz mono)\n",
|
1904 |
-
"signal, fs = torchaudio.load(audio_file)\n",
|
1905 |
-
"\n",
|
1906 |
-
"# If stereo, take only the first channel\n",
|
1907 |
-
"if signal.shape[0] > 1:\n",
|
1908 |
-
" signal = signal[0].unsqueeze(0)\n",
|
1909 |
-
"\n",
|
1910 |
-
"# Run classification\n",
|
1911 |
-
"prediction = accent_model.classify_batch(signal)\n",
|
1912 |
-
"pred_label = prediction[3][0]\n",
|
1913 |
-
"pred_scores = prediction[1][0]\n",
|
1914 |
-
"\n",
|
1915 |
-
"# Convert score to percentage\n",
|
1916 |
-
"confidence = float(pred_scores.max()) * 100\n",
|
1917 |
-
"\n",
|
1918 |
-
"# Display top label and score\n",
|
1919 |
-
"print(f\"Predicted Accent: {pred_label}\")\n",
|
1920 |
-
"print(f\"Confidence: {confidence:.1f}%\")\n",
|
1921 |
-
"print(\"Possible accent labels:\", accent_model.hparams.label_encoder.lab2ind.keys())\n",
|
1922 |
-
"\n"
|
1923 |
-
],
|
1924 |
-
"metadata": {
|
1925 |
-
"colab": {
|
1926 |
-
"base_uri": "https://localhost:8080/"
|
1927 |
-
},
|
1928 |
-
"id": "dib87e25JZkd",
|
1929 |
-
"outputId": "1ddd1991-148b-461b-94d4-845c401365d7"
|
1930 |
-
},
|
1931 |
-
"execution_count": 13,
|
1932 |
-
"outputs": [
|
1933 |
-
{
|
1934 |
-
"output_type": "stream",
|
1935 |
-
"name": "stderr",
|
1936 |
-
"text": [
|
1937 |
-
"WARNING:speechbrain.dataio.encoder:CategoricalEncoder.expect_len was never called: assuming category count of 45 to be correct! Sanity check your encoder using `.expect_len`. Ensure that downstream code also uses the correct size. If you are sure this does not apply to you, use `.ignore_len`.\n"
|
1938 |
-
]
|
1939 |
-
},
|
1940 |
-
{
|
1941 |
-
"output_type": "stream",
|
1942 |
-
"name": "stdout",
|
1943 |
-
"text": [
|
1944 |
-
"Predicted Accent: English\n",
|
1945 |
-
"Confidence: 66.8%\n",
|
1946 |
-
"Possible accent labels: dict_keys(['Basque', 'Romansh_Sursilvan', 'Sakha', 'Georgian', 'Greek', 'Hakha_Chin', 'Ukrainian', 'Interlingua', 'Persian', 'Polish', 'Dutch', 'Chinese_Hongkong', 'Japanese', 'Portuguese', 'Italian', 'Catalan', 'Chuvash', 'Swedish', 'Spanish', 'Slovenian', 'Tamil', 'Breton', 'Russian', 'Czech', 'English', 'French', 'Tatar', 'Welsh', 'Kyrgyz', 'Esperanto', 'Kinyarwanda', 'Dhivehi', 'Turkish', 'Latvian', 'Estonian', 'Arabic', 'Frisian', 'Mongolian', 'Chinese_Taiwan', 'Indonesian', 'Maltese', 'Kabyle', 'Romanian', 'Chinese_China', 'German'])\n"
|
1947 |
-
]
|
1948 |
-
}
|
1949 |
-
]
|
1950 |
-
},
|
1951 |
-
{
|
1952 |
-
"cell_type": "code",
|
1953 |
-
"source": [
|
1954 |
-
"explanation = f\"The speaker's English accent was classified as '{pred_label}' with a confidence score of {confidence:.1f}%. This means the model is {confidence:.0f}% sure the person sounds most similar to this accent group.\"\n",
|
1955 |
-
"\n",
|
1956 |
-
"print(explanation)\n"
|
1957 |
-
],
|
1958 |
-
"metadata": {
|
1959 |
-
"colab": {
|
1960 |
-
"base_uri": "https://localhost:8080/"
|
1961 |
-
},
|
1962 |
-
"id": "YchZqUzSLna9",
|
1963 |
-
"outputId": "91d6f6ae-0247-4e0e-a9c1-d0e9d379a8e0"
|
1964 |
-
},
|
1965 |
-
"execution_count": 14,
|
1966 |
-
"outputs": [
|
1967 |
-
{
|
1968 |
-
"output_type": "stream",
|
1969 |
-
"name": "stdout",
|
1970 |
-
"text": [
|
1971 |
-
"The speaker's English accent was classified as 'English' with a confidence score of 66.8%. This means the model is 67% sure the person sounds most similar to this accent group.\n"
|
1972 |
-
]
|
1973 |
-
}
|
1974 |
-
]
|
1975 |
-
},
|
1976 |
-
{
|
1977 |
-
"cell_type": "code",
|
1978 |
-
"source": [
|
1979 |
-
"# Save as app.py in Colab for launching a simple web UI\n",
|
1980 |
-
"with open(\"app.py\", \"w\") as f:\n",
|
1981 |
-
" f.write('''\n",
|
1982 |
-
"import streamlit as st\n",
|
1983 |
-
"import os\n",
|
1984 |
-
"import subprocess\n",
|
1985 |
-
"import torchaudio\n",
|
1986 |
-
"from speechbrain.pretrained import EncoderClassifier\n",
|
1987 |
-
"\n",
|
1988 |
-
"st.title(\"🗣️ English Accent Classifier (Proof of Concept)\")\n",
|
1989 |
-
"\n",
|
1990 |
-
"url = st.text_input(\"Enter public video URL (YouTube or direct MP4):\")\n",
|
1991 |
-
"if st.button(\"Analyze\"):\n",
|
1992 |
-
" with st.spinner(\"Downloading video...\"):\n",
|
1993 |
-
" if \"youtube.com\" in url or \"youtu.be\" in url:\n",
|
1994 |
-
" os.system(f'yt-dlp -o input_video.mp4 \"{url}\"')\n",
|
1995 |
-
" else:\n",
|
1996 |
-
" os.system(f'wget -O input_video.mp4 \"{url}\"')\n",
|
1997 |
-
" with st.spinner(\"Extracting audio...\"):\n",
|
1998 |
-
" os.system(\"ffmpeg -y -i input_video.mp4 -ar 16000 -ac 1 -vn audio.wav\")\n",
|
1999 |
-
" with st.spinner(\"Classifying accent...\"):\n",
|
2000 |
-
" accent_model = EncoderClassifier.from_hparams(\n",
|
2001 |
-
" source=\"speechbrain/lang-id-commonlanguage_ecapa\",\n",
|
2002 |
-
" savedir=\"tmp_accent_model\"\n",
|
2003 |
-
" )\n",
|
2004 |
-
" signal, fs = torchaudio.load(\"audio.wav\")\n",
|
2005 |
-
" if signal.shape[0] > 1:\n",
|
2006 |
-
" signal = signal[0].unsqueeze(0)\n",
|
2007 |
-
" prediction = accent_model.classify_batch(signal)\n",
|
2008 |
-
" pred_label = prediction[3][0]\n",
|
2009 |
-
" pred_scores = prediction[1][0]\n",
|
2010 |
-
" confidence = float(pred_scores.max()) * 100\n",
|
2011 |
-
" st.success(f\"Predicted Accent: {pred_label} ({confidence:.1f}%)\")\n",
|
2012 |
-
" st.info(f\"The model is {confidence:.0f}% confident this is a {pred_label} English accent.\")\n",
|
2013 |
-
"''')\n",
|
2014 |
-
"\n",
|
2015 |
-
"print(\"Streamlit app code saved as app.py!\")\n",
|
2016 |
-
"print(\"To launch the UI, run: !streamlit run app.py --server.headless true --server.port 8501\")\n"
|
2017 |
-
],
|
2018 |
-
"metadata": {
|
2019 |
-
"colab": {
|
2020 |
-
"base_uri": "https://localhost:8080/"
|
2021 |
-
},
|
2022 |
-
"id": "K7TCPSn8MLcN",
|
2023 |
-
"outputId": "5c4d3e3a-191e-4b61-97e0-739626eb6263"
|
2024 |
-
},
|
2025 |
-
"execution_count": 15,
|
2026 |
-
"outputs": [
|
2027 |
-
{
|
2028 |
-
"output_type": "stream",
|
2029 |
-
"name": "stdout",
|
2030 |
-
"text": [
|
2031 |
-
"Streamlit app code saved as app.py!\n",
|
2032 |
-
"To launch the UI, run: !streamlit run app.py --server.headless true --server.port 8501\n"
|
2033 |
-
]
|
2034 |
-
}
|
2035 |
-
]
|
2036 |
-
}
|
2037 |
-
]
|
2038 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
accent.py
DELETED
@@ -1,180 +0,0 @@
|
|
1 |
-
# -*- coding: utf-8 -*-
|
2 |
-
"""Accent.ipynb
|
3 |
-
|
4 |
-
Automatically generated by Colab.
|
5 |
-
|
6 |
-
Original file is located at
|
7 |
-
https://colab.research.google.com/drive/1yprWdRUXGqD4QIFAZuMwdyTuwA2Hhdvj
|
8 |
-
"""
|
9 |
-
|
10 |
-
# Install needed libraries (run this cell first!)
|
11 |
-
!pip install --quiet yt-dlp ffmpeg-python torch torchaudio transformers streamlit speechbrain
|
12 |
-
|
13 |
-
import os
|
14 |
-
import subprocess
|
15 |
-
import torchaudio
|
16 |
-
import torch
|
17 |
-
from speechbrain.pretrained import EncoderClassifier
|
18 |
-
import yt_dlp
|
19 |
-
|
20 |
-
# Paste your video URL here (YouTube or direct MP4 link)
|
21 |
-
VIDEO_URL = "https://youtu.be/DDjWTWHHkpk?si=oIj6Fuy8Hg2E8U_l" # Example: Replace with your actual link!
|
22 |
-
|
23 |
-
def download_video(url, out_path="input_video.mp4"):
|
24 |
-
"""
|
25 |
-
Downloads a video from YouTube or direct MP4 link.
|
26 |
-
Returns the filename of the downloaded video.
|
27 |
-
"""
|
28 |
-
# If it's a YouTube link, use yt-dlp
|
29 |
-
if "youtube.com" in url or "youtu.be" in url:
|
30 |
-
ydl_opts = {'outtmpl': out_path}
|
31 |
-
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
32 |
-
ydl.download([url])
|
33 |
-
else:
|
34 |
-
# For direct links, use wget/curl fallback
|
35 |
-
os.system(f"wget -O {out_path} {url}")
|
36 |
-
return out_path
|
37 |
-
|
38 |
-
video_file = download_video(VIDEO_URL)
|
39 |
-
print(f"Downloaded video: {video_file}")
|
40 |
-
|
41 |
-
def extract_audio(video_path, audio_path="audio.wav"):
|
42 |
-
"""
|
43 |
-
Extracts audio from a video file using ffmpeg.
|
44 |
-
Returns the filename of the audio file.
|
45 |
-
"""
|
46 |
-
# Remove if already exists
|
47 |
-
if os.path.exists(audio_path):
|
48 |
-
os.remove(audio_path)
|
49 |
-
# Extract audio with ffmpeg
|
50 |
-
cmd = f"ffmpeg -y -i {video_path} -ar 16000 -ac 1 -vn {audio_path}"
|
51 |
-
subprocess.call(cmd, shell=True)
|
52 |
-
return audio_path
|
53 |
-
|
54 |
-
audio_file = extract_audio(video_file)
|
55 |
-
print(f"Extracted audio file: {audio_file}")
|
56 |
-
|
57 |
-
def extract_audio(video_path, audio_path="/content/audio.wav"):
|
58 |
-
"""
|
59 |
-
Extracts audio from a video file using ffmpeg.
|
60 |
-
Returns the filename of the audio file.
|
61 |
-
"""
|
62 |
-
# Remove if already exists
|
63 |
-
if os.path.exists(audio_path):
|
64 |
-
os.remove(audio_path)
|
65 |
-
# Extract audio with ffmpeg
|
66 |
-
cmd = f"ffmpeg -y -i {video_path} -ar 16000 -ac 1 -vn {audio_path}"
|
67 |
-
# Use subprocess.run to capture output and check the return code
|
68 |
-
result = subprocess.run(cmd, shell=True, capture_output=True, text=True)
|
69 |
-
|
70 |
-
if result.returncode != 0:
|
71 |
-
print(f"FFmpeg command failed with error code {result.returncode}")
|
72 |
-
print("FFmpeg stderr:")
|
73 |
-
print(result.stderr)
|
74 |
-
# Optionally, raise an error or exit if audio extraction fails
|
75 |
-
raise RuntimeError(f"Failed to extract audio using FFmpeg. See stderr above.")
|
76 |
-
else:
|
77 |
-
print("FFmpeg stdout:")
|
78 |
-
print(result.stdout)
|
79 |
-
print("FFmpeg stderr:")
|
80 |
-
print(result.stderr) # ffmpeg often outputs info/warnings to stderr
|
81 |
-
|
82 |
-
# Check if the audio file was actually created
|
83 |
-
if not os.path.exists(audio_path):
|
84 |
-
raise FileNotFoundError(f"Audio file '{audio_path}' was not created after FFmpeg execution.")
|
85 |
-
|
86 |
-
return audio_path
|
87 |
-
|
88 |
-
# Download the pre-trained English accent classifier (SpeechBrain)
|
89 |
-
accent_model = EncoderClassifier.from_hparams(
|
90 |
-
source="speechbrain/lang-id-commonlanguage_ecapa",
|
91 |
-
savedir="tmp_accent_model"
|
92 |
-
)
|
93 |
-
|
94 |
-
"""Used to Debuging the code"""
|
95 |
-
|
96 |
-
# List the files to see if input_video.mp4 is present
|
97 |
-
import os
|
98 |
-
print(os.listdir('.'))
|
99 |
-
|
100 |
-
"""TO check the debug file path"""
|
101 |
-
|
102 |
-
# Try extracting audio again, but print output to check for errors
|
103 |
-
video_path = "/content/input_video.mp4.webm" # or whatever your filename is!
|
104 |
-
audio_path = "audio.wav"
|
105 |
-
|
106 |
-
os.system(f"ffmpeg -y -i {video_path} -ar 16000 -ac 1 -vn {audio_path}")
|
107 |
-
|
108 |
-
# See if audio.wav was created
|
109 |
-
print(os.listdir('.'))
|
110 |
-
|
111 |
-
"""Check the Size of the file"""
|
112 |
-
|
113 |
-
# Check if the file now exists and get its size
|
114 |
-
import os
|
115 |
-
print("audio.wav exists:", os.path.exists(audio_path))
|
116 |
-
if os.path.exists(audio_path):
|
117 |
-
print("audio.wav size (bytes):", os.path.getsize(audio_path))
|
118 |
-
|
119 |
-
# Load the audio file (must be 16kHz mono)
|
120 |
-
signal, fs = torchaudio.load(audio_file)
|
121 |
-
|
122 |
-
# If stereo, take only the first channel
|
123 |
-
if signal.shape[0] > 1:
|
124 |
-
signal = signal[0].unsqueeze(0)
|
125 |
-
|
126 |
-
# Run classification
|
127 |
-
prediction = accent_model.classify_batch(signal)
|
128 |
-
pred_label = prediction[3][0]
|
129 |
-
pred_scores = prediction[1][0]
|
130 |
-
|
131 |
-
# Convert score to percentage
|
132 |
-
confidence = float(pred_scores.max()) * 100
|
133 |
-
|
134 |
-
# Display top label and score
|
135 |
-
print(f"Predicted Accent: {pred_label}")
|
136 |
-
print(f"Confidence: {confidence:.1f}%")
|
137 |
-
print("Possible accent labels:", accent_model.hparams.label_encoder.lab2ind.keys())
|
138 |
-
|
139 |
-
explanation = f"The speaker's English accent was classified as '{pred_label}' with a confidence score of {confidence:.1f}%. This means the model is {confidence:.0f}% sure the person sounds most similar to this accent group."
|
140 |
-
|
141 |
-
print(explanation)
|
142 |
-
|
143 |
-
# Save as app.py in Colab for launching a simple web UI
|
144 |
-
with open("app.py", "w") as f:
|
145 |
-
f.write('''
|
146 |
-
import streamlit as st
|
147 |
-
import os
|
148 |
-
import subprocess
|
149 |
-
import torchaudio
|
150 |
-
from speechbrain.pretrained import EncoderClassifier
|
151 |
-
|
152 |
-
st.title("🗣️ English Accent Classifier (Proof of Concept)")
|
153 |
-
|
154 |
-
url = st.text_input("Enter public video URL (YouTube or direct MP4):")
|
155 |
-
if st.button("Analyze"):
|
156 |
-
with st.spinner("Downloading video..."):
|
157 |
-
if "youtube.com" in url or "youtu.be" in url:
|
158 |
-
os.system(f'yt-dlp -o input_video.mp4 "{url}"')
|
159 |
-
else:
|
160 |
-
os.system(f'wget -O input_video.mp4 "{url}"')
|
161 |
-
with st.spinner("Extracting audio..."):
|
162 |
-
os.system("ffmpeg -y -i input_video.mp4 -ar 16000 -ac 1 -vn audio.wav")
|
163 |
-
with st.spinner("Classifying accent..."):
|
164 |
-
accent_model = EncoderClassifier.from_hparams(
|
165 |
-
source="speechbrain/lang-id-commonlanguage_ecapa",
|
166 |
-
savedir="tmp_accent_model"
|
167 |
-
)
|
168 |
-
signal, fs = torchaudio.load("audio.wav")
|
169 |
-
if signal.shape[0] > 1:
|
170 |
-
signal = signal[0].unsqueeze(0)
|
171 |
-
prediction = accent_model.classify_batch(signal)
|
172 |
-
pred_label = prediction[3][0]
|
173 |
-
pred_scores = prediction[1][0]
|
174 |
-
confidence = float(pred_scores.max()) * 100
|
175 |
-
st.success(f"Predicted Accent: {pred_label} ({confidence:.1f}%)")
|
176 |
-
st.info(f"The model is {confidence:.0f}% confident this is a {pred_label} English accent.")
|
177 |
-
''')
|
178 |
-
|
179 |
-
print("Streamlit app code saved as app.py!")
|
180 |
-
print("To launch the UI, run: !streamlit run app.py --server.headless true --server.port 8501")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py
DELETED
@@ -1,65 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import os
|
3 |
-
import torchaudio
|
4 |
-
from speechbrain.pretrained import EncoderClassifier
|
5 |
-
|
6 |
-
def accent_detect(video_link, video_file):
|
7 |
-
# Decide which input to use
|
8 |
-
video_path = None
|
9 |
-
|
10 |
-
# If a video file is uploaded, use it
|
11 |
-
if video_file is not None:
|
12 |
-
video_path = "uploaded_input.mp4"
|
13 |
-
with open(video_path, "wb") as f:
|
14 |
-
f.write(video_file.read())
|
15 |
-
# Else if a link is provided, try to download it
|
16 |
-
elif video_link and len(video_link.strip()) > 8:
|
17 |
-
# Use yt-dlp for YouTube or wget for direct link
|
18 |
-
if "youtube.com" in video_link or "youtu.be" in video_link:
|
19 |
-
os.system(f'yt-dlp -o input_video.mp4 "{video_link}"')
|
20 |
-
else:
|
21 |
-
os.system(f'wget -O input_video.mp4 "{video_link}"')
|
22 |
-
if os.path.exists("input_video.mp4") and os.path.getsize("input_video.mp4") > 0:
|
23 |
-
video_path = "input_video.mp4"
|
24 |
-
else:
|
25 |
-
return "Failed to download the video. Please check your link."
|
26 |
-
else:
|
27 |
-
return "Please upload a video file or provide a valid video link."
|
28 |
-
|
29 |
-
# Extract audio from video
|
30 |
-
os.system(f"ffmpeg -y -i '{video_path}' -ar 16000 -ac 1 -vn audio.wav")
|
31 |
-
|
32 |
-
if not os.path.exists("audio.wav") or os.path.getsize("audio.wav") < 1000:
|
33 |
-
return "Audio extraction failed. Please use a different video."
|
34 |
-
|
35 |
-
# Load model and classify accent
|
36 |
-
accent_model = EncoderClassifier.from_hparams(
|
37 |
-
source="speechbrain/lang-id-commonlanguage_ecapa",
|
38 |
-
savedir="tmp_accent_model"
|
39 |
-
)
|
40 |
-
signal, fs = torchaudio.load("audio.wav")
|
41 |
-
if signal.shape[0] > 1:
|
42 |
-
signal = signal[0].unsqueeze(0)
|
43 |
-
prediction = accent_model.classify_batch(signal)
|
44 |
-
pred_label = prediction[3][0]
|
45 |
-
pred_scores = prediction[1][0]
|
46 |
-
confidence = float(pred_scores.max()) * 100
|
47 |
-
explanation = (
|
48 |
-
f"Predicted Accent: {pred_label} ({confidence:.1f}%)\n"
|
49 |
-
f"The model is {confidence:.0f}% confident this is a {pred_label} English accent."
|
50 |
-
)
|
51 |
-
return explanation
|
52 |
-
|
53 |
-
demo = gr.Interface(
|
54 |
-
fn=accent_detect,
|
55 |
-
inputs=[
|
56 |
-
gr.Textbox(label="YouTube or direct MP4 link (optional)", placeholder="https://youtube.com/yourvideo"),
|
57 |
-
gr.File(label="Or upload a video file (MP4, WEBM, etc.)"),
|
58 |
-
],
|
59 |
-
outputs="text",
|
60 |
-
title="🗣️ English Accent Classifier (Gradio Demo)",
|
61 |
-
description="Paste a YouTube/direct MP4 link or upload a video file with English speech. The tool predicts the English accent and confidence."
|
62 |
-
)
|
63 |
-
|
64 |
-
if __name__ == "__main__":
|
65 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
packages.txt
DELETED
@@ -1,2 +0,0 @@
|
|
1 |
-
ffmpeg
|
2 |
-
sox
|
|
|
|
|
|
requirements.txt
DELETED
@@ -1,7 +0,0 @@
|
|
1 |
-
numpy<2
|
2 |
-
torch==2.1.2
|
3 |
-
torchaudio==2.1.2
|
4 |
-
ffmpeg-python
|
5 |
-
yt-dlp
|
6 |
-
gradio
|
7 |
-
speechbrain
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|