Spaces:
Sleeping
Sleeping
File size: 1,347 Bytes
1a7973f 5eb99ac ec574b7 5eb99ac 97efaa3 5eb99ac 97efaa3 5eb99ac 460a57d 97efaa3 fac92f6 97efaa3 460a57d 97efaa3 460a57d d6da658 97efaa3 1a7973f 97efaa3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
import gradio as gr
from transformers import pipeline,WhisperProcessor, WhisperForConditionalGeneration
import torch
import librosa
import datasets
from transformers.pipelines.pt_utils import KeyDataset
from tqdm.auto import tqdm
transcriber = pipeline(model="openai/whisper-large-v2",device_map="auto")
# checkpoint = "/innev/open-ai/huggingface/openai/whisper-base"
image_to_text_model = pipeline("image-classification")
text_to_audio_model = pipeline("text-to-speech")
pipe_audio = pipeline("automatic-speech-recognition", model="facebook/wav2vec2-base-960h", device=0)
dataset = datasets.load_dataset("superb", name="asr", split="test")
for out in tqdm(pipe(KeyDataset(dataset, "file"))):
print(out)
# {"text": "NUMBER TEN FRESH NELLY IS WAITING ON YOU GOOD NIGHT HUSBAND"}
# {"text": ....}
# ....
def image_to_text(input_image):
# Convertir la imagen a texto
text_output = image_to_text_model(input_image)[0]['label']
print(text_output)
#texts = transcriber(text_output)
return text_output
#with gr.Blocks() as demo:
# gr.Markdown("Start typing below and then click **Run** to see the output.")
# with gr.Row():
# inp = gr.Image()
# out = gr.Textbox(placeholder=image_to_text(inp))
# gr.Interface(fn=image_to_text, inputs=inp, outputs=out,interpretation="default")
#demo.launch() |