SaraHossam's picture
Update app.py
686d8e1
import gradio as gr
# from transformers import pipeline
from transformers import AutoTokenizer
from transformers import AutoModelForSequenceClassification
from scipy.special import softmax
MODEL = f"cardiffnlp/twitter-roberta-base-sentiment"
tokenizer = AutoTokenizer.from_pretrained(MODEL)
model = AutoModelForSequenceClassification.from_pretrained(MODEL)
def polarity_scores_roberta(example):
encoded_text = tokenizer(example, return_tensors='pt')
output = model(**encoded_text)
scores = output[0][0].detach().numpy()
scores = softmax(scores)
scores_dict = {
'roberta_neg' : scores[0],
'roberta_neu' : scores[1],
'roberta_pos' : scores[2]
}
x=max(scores[0],scores[1],scores[2])
if x==scores[0]:
return 'Negative'
elif x==scores[1]:
return 'Neutral'
else:
return 'Positive'
def greet(name):
return "Hello " + name + "!!"
iface = gr.Interface(fn=polarity_scores_roberta, inputs="text", outputs="text")
iface.launch()