Spaces:
Sleeping
Sleeping
import gradio as gr | |
# from transformers import pipeline | |
from transformers import AutoTokenizer | |
from transformers import AutoModelForSequenceClassification | |
from scipy.special import softmax | |
MODEL = f"cardiffnlp/twitter-roberta-base-sentiment" | |
tokenizer = AutoTokenizer.from_pretrained(MODEL) | |
model = AutoModelForSequenceClassification.from_pretrained(MODEL) | |
def polarity_scores_roberta(example): | |
encoded_text = tokenizer(example, return_tensors='pt') | |
output = model(**encoded_text) | |
scores = output[0][0].detach().numpy() | |
scores = softmax(scores) | |
scores_dict = { | |
'roberta_neg' : scores[0], | |
'roberta_neu' : scores[1], | |
'roberta_pos' : scores[2] | |
} | |
x=max(scores[0],scores[1],scores[2]) | |
if x==scores[0]: | |
return 'Negative' | |
elif x==scores[1]: | |
return 'Neutral' | |
else: | |
return 'Positive' | |
def greet(name): | |
return "Hello " + name + "!!" | |
iface = gr.Interface(fn=polarity_scores_roberta, inputs="text", outputs="text") | |
iface.launch() |