Spaces:
Build error
Build error
import spacy | |
from keybert import KeyBERT | |
import numpy as np | |
import pandas as pd | |
import os | |
import re | |
import json | |
import seaborn as sns | |
import gradio as gr | |
# def separate_punc(text): | |
# return [token.text.lower() for token in text if token.text not in '\n\n \n\n\n!"-#$%&()--.*+,-/:;<=>?@[\\]^_`{|}~\t\n '] | |
kw_model = KeyBERT(model='all-mpnet-base-v2') | |
from sklearn.pipeline import Pipeline | |
from sklearn.feature_extraction.text import TfidfVectorizer | |
from sklearn.svm import LinearSVC | |
from sklearn.linear_model import LogisticRegression | |
# Feed the training data through the pipeline | |
def run(text): | |
# separate_punc(text) | |
keywords = kw_model.extract_keywords(text, keyphrase_ngram_range=(1, 3), stop_words='english', highlight=False,) | |
keywords_list= list(dict(keywords).keys()) | |
s='We suggest the following as potential topic name for the given article: \n ' | |
for i in range (len(keywords_list)): | |
s = s+keywords_list[i] + '\n ' | |
# if i<=len(keywords_list): | |
# print('Would you like another suggestion?') | |
# f=input() | |
# if f=='No': | |
# break | |
# else: | |
# print('Sorry That is all we can suggest') | |
return s | |
iface = gr.Interface(fn=run, inputs="text", outputs="text") | |
iface.launch() |