AttnTrace / src /attribution /attention_utils.py
SecureLLMSys's picture
init
f214f36
"""
Utilities for extracting and manipulating attention weights from transformer models,
starting from pre-computed hidden states.
This module provides functions to compute attention weights from various transformer
models (like Llama, Phi, Qwen, Gemma) and use them for attribution. We compute only
the relevant attention weights (as specified by `attribution_start` and
`attribution_end`) in order to be able to efficiently compute and store them. If we
were to use `output_attentions=True` in the forward pass, we would (1) only be able
to use the `eager` attention implementation, and (2) would need to store the entire
attention matrix which grows quadratically with the sequence length. Most of the
logic here is replicated from the `transformers` library.
If you'd like to perform attribution on a model that is not currently supported,
you can add it yourself by modifying `infer_model_type` and
`get_layer_attention_weights`. Please see `tests/attribution/test_attention.py`
to ensure that your implementation matches the expected attention weights when
using the `output_attentions=True`.
"""
import math
from typing import Any, Optional
import torch as ch
import transformers.models
def infer_model_type(model):
model_type_to_keyword = {
"llama": "llama",
"phi3": "phi",
"qwen2": "qwen",
"gemma3": "gemma",
}
for model_type, keyword in model_type_to_keyword.items():
if keyword in model.name_or_path.lower():
return model_type
else:
raise ValueError(f"Unknown model: {model.name_or_path}. Specify `model_type`.")
def get_helpers(model_type):
#for model_name in dir(transformers.models):
# if not model_name.startswith('__') and ("gemma" in model_name or "chatglm" in model_name):
# print(model_name)
if not hasattr(transformers.models, model_type):
raise ValueError(f"Unknown model: {model_type}")
model_module = getattr(transformers.models, model_type)
modeling_module = getattr(model_module, f"modeling_{model_type}")
return modeling_module.apply_rotary_pos_emb, modeling_module.repeat_kv
def get_position_ids_and_attention_mask(model, hidden_states):
input_embeds = hidden_states[0]
_, seq_len, _ = input_embeds.shape
position_ids = ch.arange(0, seq_len, device=model.device).unsqueeze(0)
attention_mask = ch.ones(
seq_len, seq_len + 1, device=model.device, dtype=model.dtype
)
attention_mask = ch.triu(attention_mask, diagonal=1)
attention_mask *= ch.finfo(model.dtype).min
attention_mask = attention_mask[None, None]
return position_ids, attention_mask
def get_attentions_shape(model):
num_layers = len(model.model.layers)
num_heads = model.model.config.num_attention_heads
return num_layers, num_heads
def get_layer_attention_weights(
model,
hidden_states,
layer_index,
position_ids,
attention_mask,
attribution_start=None,
attribution_end=None,
model_type=None,
):
model_type = model_type or infer_model_type(model)
assert layer_index >= 0 and layer_index < len(model.model.layers)
layer = model.model.layers[layer_index]
self_attn = layer.self_attn
hidden_states = hidden_states[layer_index]
#print("hidden_states_shape: ", hidden_states.shape)
hidden_states = layer.input_layernorm(hidden_states)
bsz, q_len, _ = hidden_states.size()
num_attention_heads = model.model.config.num_attention_heads
num_key_value_heads = model.model.config.num_key_value_heads
head_dim = self_attn.head_dim
if model_type in ("llama", "qwen2", "qwen1.5","gemma3","glm"):
query_states = self_attn.q_proj(hidden_states)
key_states = self_attn.k_proj(hidden_states)
elif model_type in ("phi3",):
qkv = self_attn.qkv_proj(hidden_states)
query_pos = num_attention_heads * head_dim
query_states = qkv[..., :query_pos]
key_states = qkv[..., query_pos : query_pos + num_key_value_heads * head_dim]
else:
raise ValueError(f"Unknown model: {model.name_or_path}")
query_states = query_states.view(bsz, q_len, num_attention_heads, head_dim)
query_states = query_states.transpose(1, 2)
key_states = key_states.view(bsz, q_len, num_key_value_heads, head_dim)
key_states = key_states.transpose(1, 2)
if model_type in ["gemma3"]:
query_states = self_attn.q_norm(query_states)
key_states = self_attn.k_norm(key_states)
if self_attn.is_sliding:
position_embeddings = model.model.rotary_emb_local(
hidden_states, position_ids
)
else:
position_embeddings = model.model.rotary_emb(hidden_states, position_ids)
else:
position_embeddings = model.model.rotary_emb(hidden_states, position_ids)
cos, sin = position_embeddings
apply_rotary_pos_emb, repeat_kv = get_helpers(model_type)
#query_states = query_states.to("cuda:0")
#key_states = key_states.to("cuda:0")
#cos = cos.to("cuda:0")
#sin = sin.to("cuda:0")
#print("D1", query_states.device)
#print("D2", key_states.device)
# print("D3", cos.device)
#print("D4", sin.device)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
key_states = repeat_kv(key_states, self_attn.num_key_value_groups)
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attribution_start = attribution_start if attribution_start is not None else 1
attribution_end = attribution_end if attribution_end is not None else q_len + 1
causal_mask = causal_mask[:, :, attribution_start - 1 : attribution_end - 1]
query_states = query_states[:, :, attribution_start - 1 : attribution_end - 1]
attn_weights = ch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(
head_dim
)
attn_weights = attn_weights + causal_mask
dtype = attn_weights.dtype
attn_weights = ch.softmax(attn_weights, dim=-1, dtype=ch.float32).to(dtype)
return attn_weights
def get_attention_weights(
model: Any,
hidden_states: Any,
attribution_start: Optional[int] = None,
attribution_end: Optional[int] = None,
model_type: Optional[str] = None,
) -> Any:
"""
Compute the attention weights for the given model and hidden states.
Args:
model: The model to compute the attention weights for.
hidden_states: The pre-computed hidden states.
attribution_start: The start index of the tokens we would like to attribute.
attribution_end: The end index of the tokens we would like to attribute.
model_type: The type of model to compute the attention weights for (each model
in the `transformers` library has its own specific attention implementation).
"""
with ch.no_grad():
position_ids, attention_mask = get_position_ids_and_attention_mask(
model, hidden_states
)
num_layers, num_heads = get_attentions_shape(model)
num_tokens = hidden_states[0].shape[1] + 1
attribution_start = attribution_start if attribution_start is not None else 1
attribution_end = attribution_end if attribution_end is not None else num_tokens
num_target_tokens = attribution_end - attribution_start
weights = ch.zeros(
num_layers,
num_heads,
num_target_tokens,
num_tokens - 1,
device=model.device,
dtype=model.dtype,
)
for i in range(len(model.model.layers)):
cur_weights = get_layer_attention_weights(
model,
hidden_states,
i,
position_ids,
attention_mask,
attribution_start=attribution_start,
attribution_end=attribution_end,
model_type=model_type,
)
weights[i, :, :, :] = cur_weights[0]
return weights
def get_attention_weights_one_layer(
model: Any,
hidden_states: Any,
layer_index: int,
attribution_start: Optional[int] = None,
attribution_end: Optional[int] = None,
model_type: Optional[str] = None,
) -> Any:
"""
Compute the attention weights for the given model and hidden states.
Args:
model: The model to compute the attention weights for.
hidden_states: The pre-computed hidden states.
attribution_start: The start index of the tokens we would like to attribute.
attribution_end: The end index of the tokens we would like to attribute.
model_type: The type of model to compute the attention weights for (each model
in the `transformers` library has its own specific attention implementation).
"""
with ch.no_grad():
position_ids, attention_mask = get_position_ids_and_attention_mask(
model, hidden_states
)
num_layers, num_heads = get_attentions_shape(model)
num_tokens = hidden_states[0].shape[1] + 1
attribution_start = attribution_start if attribution_start is not None else 1
attribution_end = attribution_end if attribution_end is not None else num_tokens
num_target_tokens = attribution_end - attribution_start
weights = ch.zeros(
num_layers,
num_heads,
num_target_tokens,
num_tokens - 1,
device=model.device,
dtype=model.dtype,
)
weights = get_layer_attention_weights(
model,
hidden_states,
layer_index,
position_ids,
attention_mask,
attribution_start=attribution_start,
attribution_end=attribution_end,
model_type=model_type,
)
return weights
def get_hidden_states_one_layer(
model: Any,
hidden_states: Any,
layer_index: int,
attribution_start: Optional[int] = None,
attribution_end: Optional[int] = None,
model_type: Optional[str] = None,
) -> Any:
def get_hidden_states(
model,
hidden_states,
layer_index,
position_ids,
attention_mask,
attribution_start=None,
attribution_end=None,
model_type=None,
):
model_type = model_type or infer_model_type(model)
assert layer_index >= 0 and layer_index < len(model.model.layers)
layer = model.model.layers[layer_index]
self_attn = layer.self_attn
hidden_states = hidden_states[layer_index]
#print("hidden_states_shape: ", hidden_states.shape)
hidden_states = layer.input_layernorm(hidden_states)
bsz, q_len, _ = hidden_states.size()
num_attention_heads = model.model.config.num_attention_heads
num_key_value_heads = model.model.config.num_key_value_heads
head_dim = self_attn.head_dim
if model_type in ("llama", "qwen2", "qwen1.5","gemma3","glm"):
query_states = self_attn.q_proj(hidden_states)
key_states = self_attn.k_proj(hidden_states)
elif model_type in ("phi3",):
qkv = self_attn.qkv_proj(hidden_states)
query_pos = num_attention_heads * head_dim
query_states = qkv[..., :query_pos]
key_states = qkv[..., query_pos : query_pos + num_key_value_heads * head_dim]
else:
raise ValueError(f"Unknown model: {model.name_or_path}")
query_states = query_states.view(bsz, q_len, num_attention_heads, head_dim)
query_states = query_states.transpose(1, 2)
key_states = key_states.view(bsz, q_len, num_key_value_heads, head_dim).mean(dim=(0, 2))
return key_states
"""
Compute the attention weights for the given model and hidden states.
Args:
model: The model to compute the attention weights for.
hidden_states: The pre-computed hidden states.
attribution_start: The start index of the tokens we would like to attribute.
attribution_end: The end index of the tokens we would like to attribute.
model_type: The type of model to compute the attention weights for (each model
in the `transformers` library has its own specific attention implementation).
"""
with ch.no_grad():
position_ids, attention_mask = get_position_ids_and_attention_mask(
model, hidden_states
)
num_layers, num_heads = get_attentions_shape(model)
num_tokens = hidden_states[0].shape[1] + 1
attribution_start = attribution_start if attribution_start is not None else 1
attribution_end = attribution_end if attribution_end is not None else num_tokens
num_target_tokens = attribution_end - attribution_start
weights = ch.zeros(
num_layers,
num_heads,
num_target_tokens,
num_tokens - 1,
device=model.device,
dtype=model.dtype,
)
hidden_states = get_hidden_states(
model,
hidden_states,
layer_index,
position_ids,
attention_mask,
attribution_start=attribution_start,
attribution_end=attribution_end,
model_type=model_type,
)
return hidden_states