Spaces:
Running
on
Zero
Running
on
Zero
from src.prompts import wrap_prompt_self_citation | |
from src.utils import * | |
import time | |
from src.models import create_model | |
from .attribute import * | |
import copy | |
class SelfCitationAttribution(Attribution): | |
def __init__(self, llm, explanation_level,K=5,self_citation_model = "self",verbose = 1): | |
super().__init__(llm,explanation_level,K,verbose) | |
if "gpt" not in llm.name: | |
self.model = llm.model | |
self.tokenizer = llm.tokenizer | |
else: | |
self.model = llm | |
if self_citation_model == "self": | |
self.explainer = self.llm | |
else: | |
self.explainer = create_model(f'model_configs/{self.self_citation_model}_config.json') | |
def attribute(self, question:str, contexts:list, answer:str): | |
def remove_numbered_patterns(input_string): | |
# Define the pattern to be removed, where \d+ matches one or more digits | |
pattern = r'\[\d+\]' | |
# Use re.sub() to replace all occurrences of the pattern with an empty string | |
result = re.sub(pattern, '', input_string) | |
result = result.replace('\n', '') | |
return result | |
def extract_numbers_in_order(input_string): | |
# Define the pattern to match numbers within square brackets | |
pattern = r'\[(\d+)\]' | |
# Use re.findall() to find all occurrences of the pattern and extract the numbers | |
numbers = re.findall(pattern, input_string) | |
# Convert the list of strings to a list of integers | |
numbers = [int(num) for num in numbers] | |
return numbers | |
""" | |
Given question, contexts and answer, return attribution results | |
""" | |
start_time = time.time() | |
texts = split_context(self.explanation_level,contexts) | |
citation_texts = copy.deepcopy(texts) | |
for i,sentence in enumerate(citation_texts): | |
#clean up existing numbered patterns | |
sentence = remove_numbered_patterns(sentence) | |
citation_texts[i]=f"[{str(i)}]: "+sentence | |
prompt = wrap_prompt_self_citation(question, citation_texts,answer) | |
start_time = time.time() | |
self_citation = self.explainer.query(prompt) | |
end_time = time.time() | |
print("Self Citation: ", self_citation) | |
important_ids = extract_numbers_in_order(self_citation) | |
important_ids = [i for i in important_ids if i < len(citation_texts)] | |
print("Important ids: ", important_ids) | |
importance_scores = list(range(len(important_ids), 0, -1)) | |
return texts,important_ids, importance_scores, end_time-start_time,None |