Files changed (11) hide show
  1. .gitignore +1 -4
  2. README.md +4 -4
  3. __pycache__/utils.cpython-310.pyc +0 -0
  4. app.py +141 -356
  5. gradio_runner.py +0 -10
  6. log_chat.py +0 -237
  7. requirements.txt +1 -3
  8. styles.css +0 -118
  9. theme.py +0 -148
  10. timer.py +0 -114
  11. utils.py +0 -127
.gitignore CHANGED
@@ -1,4 +1 @@
1
- .idea/*
2
- __pycache__/
3
- /.run*/
4
- /train.csv
 
1
+ .idea/*
 
 
 
README.md CHANGED
@@ -1,8 +1,8 @@
1
  ---
2
- title: Apriel Chat
3
  emoji: 💬
4
- colorFrom: green
5
- colorTo: blue
6
  sdk: gradio
7
  sdk_version: 5.29.0
8
  app_file: app.py
@@ -11,4 +11,4 @@ license: mit
11
  short_description: ServiceNow-AI model chat
12
  ---
13
 
14
- A chatbot for ServiceNow-AI model chat. This is a demo of the Apriel Nemotron Chat model. The chatbot can answer questions, provide information, etc.
 
1
  ---
2
+ title: Apriel Nemotron Chat
3
  emoji: 💬
4
+ colorFrom: yellow
5
+ colorTo: purple
6
  sdk: gradio
7
  sdk_version: 5.29.0
8
  app_file: app.py
 
11
  short_description: ServiceNow-AI model chat
12
  ---
13
 
14
+ An example chatbot using [Gradio](https://gradio.app), [`huggingface_hub`](https://huggingface.co/docs/huggingface_hub/v0.22.2/en/index), and the [Hugging Face Inference API](https://huggingface.co/docs/api-inference/index).
__pycache__/utils.cpython-310.pyc DELETED
Binary file (2.59 kB)
 
app.py CHANGED
@@ -1,381 +1,166 @@
 
 
1
  import datetime
2
- from uuid import uuid4
3
 
4
  from openai import OpenAI
5
  import gradio as gr
 
 
 
 
 
6
 
7
- from theme import apriel
8
- from utils import COMMUNITY_POSTFIX_URL, get_model_config, check_format, models_config, \
9
- logged_event_handler, DEBUG_MODEL, log_debug, log_info, log_error
10
- from log_chat import log_chat
11
 
12
- MODEL_TEMPERATURE = 0.8
13
- BUTTON_WIDTH = 160
14
- DEFAULT_OPT_OUT_VALUE = False
15
 
16
- DEFAULT_MODEL_NAME = "Apriel-Nemotron-15b-Thinker" if not DEBUG_MODEL else "Apriel-5b"
17
-
18
- BUTTON_ENABLED = gr.update(interactive=True)
19
- BUTTON_DISABLED = gr.update(interactive=False)
20
- INPUT_ENABLED = gr.update(interactive=True)
21
- INPUT_DISABLED = gr.update(interactive=False)
22
- DROPDOWN_ENABLED = gr.update(interactive=True)
23
- DROPDOWN_DISABLED = gr.update(interactive=False)
24
-
25
- SEND_BUTTON_ENABLED = gr.update(interactive=True, visible=True)
26
- SEND_BUTTON_DISABLED = gr.update(interactive=True, visible=False)
27
- STOP_BUTTON_ENABLED = gr.update(interactive=True, visible=True)
28
- STOP_BUTTON_DISABLED = gr.update(interactive=True, visible=False)
29
 
30
  chat_start_count = 0
31
- model_config = {}
32
- openai_client = None
33
-
34
-
35
- def app_loaded(state, request: gr.Request):
36
- message_html = setup_model(DEFAULT_MODEL_NAME, intial=False)
37
- state['session'] = request.session_hash if request else uuid4().hex
38
- log_debug(f"app_loaded() --> Session: {state['session']}")
39
- return state, message_html
40
-
41
-
42
- def update_model_and_clear_chat(model_name):
43
- actual_model_name = model_name.replace("Model: ", "")
44
- desc = setup_model(actual_model_name)
45
- return desc, []
46
-
47
-
48
- def setup_model(model_name, intial=False):
49
- global model_config, openai_client
50
- model_config = get_model_config(model_name)
51
- log_debug(f"update_model() --> Model config: {model_config}")
52
- openai_client = OpenAI(
53
- api_key=model_config.get('AUTH_TOKEN'),
54
- base_url=model_config.get('VLLM_API_URL')
55
- )
56
-
57
- _model_hf_name = model_config.get("MODEL_HF_URL").split('https://huggingface.co/')[1]
58
- _link = f"<a href='{model_config.get('MODEL_HF_URL')}{COMMUNITY_POSTFIX_URL}' target='_blank'>{_model_hf_name}</a>"
59
- _description = f"We'd love to hear your thoughts on the model. Click here to provide feedback - {_link}"
60
-
61
- log_debug(f"Switched to model {_model_hf_name}")
62
-
63
- if intial:
64
- return
65
- else:
66
- return _description
67
-
68
-
69
- def chat_started():
70
- # outputs: model_dropdown, user_input, send_btn, stop_btn, clear_btn
71
- return (DROPDOWN_DISABLED, gr.update(value="", interactive=False),
72
- SEND_BUTTON_DISABLED, STOP_BUTTON_ENABLED, BUTTON_DISABLED)
73
-
74
-
75
- def chat_finished():
76
- # outputs: model_dropdown, user_input, send_btn, stop_btn, clear_btn
77
- return DROPDOWN_ENABLED, INPUT_ENABLED, SEND_BUTTON_ENABLED, STOP_BUTTON_DISABLED, BUTTON_ENABLED
78
-
79
-
80
- def stop_chat(state):
81
- state["stop_flag"] = True
82
- gr.Info("Chat stopped")
83
- return state
84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85
 
86
- def toggle_opt_out(state, checkbox):
87
- state["opt_out"] = checkbox
88
- return state
89
 
 
 
90
 
91
- def run_chat_inference(history, message, state):
92
  global chat_start_count
93
- state["is_streaming"] = True
94
- state["stop_flag"] = False
95
- error = None
96
- model_name = model_config.get('MODEL_NAME')
97
-
98
- if len(history) == 0:
99
- state["chat_id"] = uuid4().hex
100
-
101
- if openai_client is None:
102
- log_info("Client UI is stale, letting user know to refresh the page")
103
- gr.Warning("Client UI is stale, please refresh the page")
104
- return history, INPUT_ENABLED, SEND_BUTTON_ENABLED, STOP_BUTTON_DISABLED, BUTTON_ENABLED, state
105
-
106
- # outputs: model_dropdown, user_input, send_btn, stop_btn, clear_btn, session_state
107
- log_debug(f"{'-' * 80}")
108
- log_debug(f"chat_fn() --> Message: {message}")
109
- log_debug(f"chat_fn() --> History: {history}")
110
-
111
- try:
112
- # Check if the message is empty
113
- if not message.strip():
114
- gr.Info("Please enter a message before sending")
115
- yield history, INPUT_ENABLED, SEND_BUTTON_ENABLED, STOP_BUTTON_DISABLED, BUTTON_ENABLED, state
116
- return history, INPUT_ENABLED, SEND_BUTTON_ENABLED, STOP_BUTTON_DISABLED, BUTTON_ENABLED, state
117
-
118
- chat_start_count = chat_start_count + 1
119
- user_messages_count = sum(1 for item in history if isinstance(item, dict) and item.get("role") == "user")
120
- log_info(f"chat_start_count: {chat_start_count}, turns: {user_messages_count}, model: {model_name}")
121
-
122
- is_reasoning = model_config.get("REASONING")
123
-
124
- # Remove any assistant messages with metadata from history for multiple turns
125
- log_debug(f"Initial History: {history}")
126
- check_format(history, "messages")
127
- history.append({"role": "user", "content": message})
128
- log_debug(f"History with user message: {history}")
129
- check_format(history, "messages")
130
-
131
- # Create the streaming response
132
- try:
133
- history_no_thoughts = [item for item in history if
134
- not (isinstance(item, dict) and
135
- item.get("role") == "assistant" and
136
- isinstance(item.get("metadata"), dict) and
137
- item.get("metadata", {}).get("title") is not None)]
138
- log_debug(f"Updated History: {history_no_thoughts}")
139
- check_format(history_no_thoughts, "messages")
140
- log_debug(f"history_no_thoughts with user message: {history_no_thoughts}")
141
-
142
- stream = openai_client.chat.completions.create(
143
- model=model_name,
144
- messages=history_no_thoughts,
145
- temperature=MODEL_TEMPERATURE,
146
- stream=True
147
- )
148
- except Exception as e:
149
- log_error(f"Error: {e}")
150
- error = str(e)
151
- yield ([{"role": "assistant",
152
- "content": "😔 The model is unavailable at the moment. Please try again later."}],
153
- INPUT_ENABLED, SEND_BUTTON_ENABLED, STOP_BUTTON_DISABLED, BUTTON_ENABLED, state)
154
- if state["opt_out"] is not True:
155
- log_chat(chat_id=state["chat_id"],
156
- session_id=state["session"],
157
- model_name=model_name,
158
- prompt=message,
159
- history=history,
160
- info={"is_reasoning": model_config.get("REASONING"), "temperature": MODEL_TEMPERATURE,
161
- "stopped": True, "error": str(e)},
162
- )
163
- else:
164
- log_info(f"User opted out of chat history. Not logging chat. model: {model_name}")
165
- return history, INPUT_ENABLED, SEND_BUTTON_ENABLED, STOP_BUTTON_DISABLED, BUTTON_ENABLED, state
166
 
167
- if is_reasoning:
168
- history.append(gr.ChatMessage(
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
169
  role="assistant",
170
- content="Thinking...",
171
- metadata={"title": "🧠 Thought"}
172
- ))
173
- log_debug(f"History added thinking: {history}")
174
- check_format(history, "messages")
175
- else:
176
  history.append(gr.ChatMessage(
177
  role="assistant",
178
- content="",
179
  ))
180
- log_debug(f"History added empty assistant: {history}")
181
- check_format(history, "messages")
182
-
183
- output = ""
184
- completion_started = False
185
- for chunk in stream:
186
- if state["stop_flag"]:
187
- log_debug(f"chat_fn() --> Stopping streaming...")
188
- break # Exit the loop if the stop flag is set
189
- # Extract the new content from the delta field
190
- content = getattr(chunk.choices[0].delta, "content", "")
191
- output += content
192
-
193
- if is_reasoning:
194
- parts = output.split("[BEGIN FINAL RESPONSE]")
195
 
196
- if len(parts) > 1:
197
- if parts[1].endswith("[END FINAL RESPONSE]"):
198
- parts[1] = parts[1].replace("[END FINAL RESPONSE]", "")
199
- if parts[1].endswith("[END FINAL RESPONSE]\n<|end|>"):
200
- parts[1] = parts[1].replace("[END FINAL RESPONSE]\n<|end|>", "")
201
- if parts[1].endswith("<|end|>"):
202
- parts[1] = parts[1].replace("<|end|>", "")
203
 
204
- history[-1 if not completion_started else -2] = gr.ChatMessage(
205
- role="assistant",
206
- content=parts[0],
207
- metadata={"title": "🧠 Thought"}
208
- )
209
- if completion_started:
210
- history[-1] = gr.ChatMessage(
211
- role="assistant",
212
- content=parts[1]
213
- )
214
- elif len(parts) > 1 and not completion_started:
215
- completion_started = True
216
- history.append(gr.ChatMessage(
217
- role="assistant",
218
- content=parts[1]
219
- ))
220
- else:
221
- if output.endswith("<|end|>"):
222
- output = output.replace("<|end|>", "")
223
- history[-1] = gr.ChatMessage(
224
- role="assistant",
225
- content=output
226
- )
227
 
228
- # log_message(f"Yielding messages: {history}")
229
- yield history, INPUT_DISABLED, SEND_BUTTON_DISABLED, STOP_BUTTON_ENABLED, BUTTON_DISABLED, state
230
 
231
- log_debug(f"Final History: {history}")
232
- check_format(history, "messages")
233
- yield history, INPUT_ENABLED, SEND_BUTTON_ENABLED, STOP_BUTTON_DISABLED, BUTTON_ENABLED, state
234
- finally:
235
- if error is None:
236
- log_debug(f"chat_fn() --> Finished streaming. {chat_start_count} chats started.")
237
- if state["opt_out"] is not True:
238
- log_chat(chat_id=state["chat_id"],
239
- session_id=state["session"],
240
- model_name=model_name,
241
- prompt=message,
242
- history=history,
243
- info={"is_reasoning": model_config.get("REASONING"), "temperature": MODEL_TEMPERATURE,
244
- "stopped": state["stop_flag"]},
245
- )
246
 
247
- else:
248
- log_info(f"User opted out of chat history. Not logging chat. model: {model_name}")
249
- state["is_streaming"] = False
250
- state["stop_flag"] = False
251
- return history, INPUT_ENABLED, SEND_BUTTON_ENABLED, STOP_BUTTON_DISABLED, BUTTON_ENABLED, state
252
-
253
-
254
- log_info(f"Gradio version: {gr.__version__}")
255
-
256
- title = None
257
- description = None
258
- theme = apriel
259
-
260
- with open('styles.css', 'r') as f:
261
- custom_css = f.read()
262
-
263
- with gr.Blocks(theme=theme, css=custom_css) as demo:
264
- session_state = gr.State(value={
265
- "is_streaming": False,
266
- "stop_flag": False,
267
- "chat_id": None,
268
- "session": None,
269
- "opt_out": DEFAULT_OPT_OUT_VALUE,
270
- }) # Store session state as a dictionary
271
-
272
- gr.HTML(f"""
273
- <style>
274
- @media (min-width: 1024px) {{
275
- .send-button-container, .clear-button-container {{
276
- max-width: {BUTTON_WIDTH}px;
277
- }}
278
- }}
279
- </style>
280
- """, elem_classes="css-styles")
281
- with gr.Row(variant="panel", elem_classes="responsive-row"):
282
- with gr.Column(scale=1, min_width=400, elem_classes="model-dropdown-container"):
283
- model_dropdown = gr.Dropdown(
284
- choices=[f"Model: {model}" for model in models_config.keys()],
285
- value=f"Model: {DEFAULT_MODEL_NAME}",
286
- label=None,
287
- interactive=True,
288
- container=False,
289
- scale=0,
290
- min_width=400
291
- )
292
- with gr.Column(scale=4, min_width=0):
293
- feedback_message_html = gr.HTML(description, elem_classes="model-message")
294
-
295
- chatbot = gr.Chatbot(
296
- type="messages",
297
- height="calc(100dvh - 310px)",
298
- elem_classes="chatbot",
299
- )
300
-
301
- with gr.Row():
302
- with gr.Column(scale=10, min_width=400):
303
- with gr.Row():
304
- user_input = gr.Textbox(
305
- show_label=False,
306
- placeholder="Type your message here and press Enter",
307
- container=False
308
- )
309
- with gr.Column(scale=1, min_width=BUTTON_WIDTH * 2 + 20):
310
- with gr.Row():
311
- with gr.Column(scale=1, min_width=BUTTON_WIDTH, elem_classes="send-button-container"):
312
- send_btn = gr.Button("Send", variant="primary")
313
- stop_btn = gr.Button("Stop", variant="cancel", visible=False)
314
- with gr.Column(scale=1, min_width=BUTTON_WIDTH, elem_classes="clear-button-container"):
315
- clear_btn = gr.ClearButton(chatbot, value="New Chat", variant="secondary")
316
- with gr.Row():
317
- with gr.Column(min_width=400, elem_classes="opt-out-container"):
318
- with gr.Row():
319
- gr.HTML(
320
- "We may use your chats to improve our AI. You may opt out if you don’t want your conversations saved.",
321
- elem_classes="opt-out-message")
322
- with gr.Row():
323
- opt_out_checkbox = gr.Checkbox(
324
- label="Don’t save my chat history for improvements or training",
325
- value=DEFAULT_OPT_OUT_VALUE,
326
- elem_classes="opt-out-checkbox",
327
- interactive=True,
328
- container=False
329
- )
330
-
331
- gr.on(
332
- triggers=[send_btn.click, user_input.submit],
333
- fn=run_chat_inference, # this generator streams results. do not use logged_event_handler wrapper
334
- inputs=[chatbot, user_input, session_state],
335
- outputs=[chatbot, user_input, send_btn, stop_btn, clear_btn, session_state],
336
- concurrency_limit=4,
337
- api_name=False
338
- ).then(
339
- fn=chat_finished, inputs=None, outputs=[model_dropdown, user_input, send_btn, stop_btn, clear_btn], queue=False)
340
-
341
- # In parallel, disable or update the UI controls
342
- gr.on(
343
- triggers=[send_btn.click, user_input.submit],
344
- fn=chat_started,
345
- inputs=None,
346
- outputs=[model_dropdown, user_input, send_btn, stop_btn, clear_btn],
347
- queue=False,
348
- show_progress='hidden',
349
- api_name=False
350
- )
351
-
352
- stop_btn.click(
353
- fn=stop_chat,
354
- inputs=[session_state],
355
- outputs=[session_state],
356
- api_name=False
357
- )
358
-
359
- opt_out_checkbox.change(fn=toggle_opt_out, inputs=[session_state, opt_out_checkbox], outputs=[session_state])
360
-
361
- # Ensure the model is reset to default on page reload
362
- demo.load(
363
- fn=logged_event_handler(
364
- log_msg="Browser session started",
365
- event_handler=app_loaded
366
- ),
367
- inputs=[session_state],
368
- outputs=[session_state, feedback_message_html],
369
- queue=True,
370
- api_name=False
371
- )
372
-
373
- model_dropdown.change(
374
- fn=update_model_and_clear_chat,
375
- inputs=[model_dropdown],
376
- outputs=[feedback_message_html, chatbot],
377
- api_name=False
378
- )
379
 
380
- demo.queue(default_concurrency_limit=2).launch(ssr_mode=False, show_api=False)
381
- log_info("Gradio app launched")
 
 
 
 
 
 
1
+ import os
2
+ import sys
3
  import datetime
 
4
 
5
  from openai import OpenAI
6
  import gradio as gr
7
+ from gradio.components.chatbot import ChatMessage, Message
8
+ from typing import (
9
+ Any,
10
+ Literal,
11
+ )
12
 
13
+ DEBUG_LOG = False or os.environ.get("DEBUG_LOG") == "True"
 
 
 
14
 
15
+ print(f"Gradio version: {gr.__version__}")
 
 
16
 
17
+ title = None # "ServiceNow-AI Chat" # modelConfig.get('MODE_DISPLAY_NAME')
18
+ description = "Please use the community section on this space to provide feedback! <a href=\"https://huggingface.co/ServiceNow-AI/Apriel-Nemotron-15b-Thinker/discussions\">ServiceNow-AI/Apriel-Nemotron-Chat</a>"
 
 
 
 
 
 
 
 
 
 
 
19
 
20
  chat_start_count = 0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
 
22
+ model_config = {
23
+ "MODEL_NAME": os.environ.get("MODEL_NAME"),
24
+ "MODE_DISPLAY_NAME": os.environ.get("MODE_DISPLAY_NAME"),
25
+ "MODEL_HF_URL": os.environ.get("MODEL_HF_URL"),
26
+ "VLLM_API_URL": os.environ.get("VLLM_API_URL"),
27
+ "AUTH_TOKEN": os.environ.get("AUTH_TOKEN")
28
+ }
29
+
30
+ # Initialize the OpenAI client with the vLLM API URL and token
31
+ client = OpenAI(
32
+ api_key=model_config.get('AUTH_TOKEN'),
33
+ base_url=model_config.get('VLLM_API_URL')
34
+ )
35
+
36
+
37
+ def log_message(message):
38
+ if DEBUG_LOG is True:
39
+ print(message)
40
+
41
+
42
+ # Gradio 5.0.1 had issues with checking the message formats. 5.29.0 does not!
43
+ def _check_format(messages: Any, type: Literal["messages", "tuples"] = "messages") -> None:
44
+ if type == "messages":
45
+ all_valid = all(
46
+ isinstance(message, dict)
47
+ and "role" in message
48
+ and "content" in message
49
+ or isinstance(message, ChatMessage | Message)
50
+ for message in messages
51
+ )
52
+ if not all_valid:
53
+ # Display which message is not valid
54
+ for i, message in enumerate(messages):
55
+ if not (isinstance(message, dict) and
56
+ "role" in message and
57
+ "content" in message) and not isinstance(message, ChatMessage | Message):
58
+ print(f"_check_format() --> Invalid message at index {i}: {message}\n", file=sys.stderr)
59
+ break
60
+
61
+ raise Exception(
62
+ "Data incompatible with messages format. Each message should be a dictionary with 'role' and 'content' keys or a ChatMessage object."
63
+ )
64
+ # else:
65
+ # print("_check_format() --> All messages are valid.")
66
+ elif not all(
67
+ isinstance(message, (tuple, list)) and len(message) == 2
68
+ for message in messages
69
+ ):
70
+ raise Exception(
71
+ "Data incompatible with tuples format. Each message should be a list of length 2."
72
+ )
73
 
 
 
 
74
 
75
+ def chat_fn(message, history):
76
+ log_message(f"{'-' * 80}\nchat_fn() --> Message: {message}")
77
 
 
78
  global chat_start_count
79
+ chat_start_count = chat_start_count + 1
80
+ print(
81
+ f"{datetime.datetime.now()}: chat_start_count: {chat_start_count}, turns: {int(len(history if history else []) / 3)}")
82
+
83
+ # Remove any assistant messages with metadata from history for multiple turns
84
+ log_message(f"Original History: {history}")
85
+ _check_format(history, "messages")
86
+ history = [item for item in history if
87
+ not (isinstance(item, dict) and
88
+ item.get("role") == "assistant" and
89
+ isinstance(item.get("metadata"), dict) and
90
+ item.get("metadata", {}).get("title") is not None)]
91
+ log_message(f"Updated History: {history}")
92
+ _check_format(history, "messages")
93
+
94
+ history.append({"role": "user", "content": message})
95
+ log_message(f"History with user message: {history}")
96
+ _check_format(history, "messages")
97
+
98
+ # Create the streaming response
99
+ stream = client.chat.completions.create(
100
+ model=model_config.get('MODEL_NAME'),
101
+ messages=history,
102
+ temperature=0.8,
103
+ stream=True
104
+ )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
105
 
106
+ history.append(gr.ChatMessage(
107
+ role="assistant",
108
+ content="Thinking...",
109
+ metadata={"title": "🧠 Thought"}
110
+ ))
111
+ log_message(f"History added thinking: {history}")
112
+ _check_format(history, "messages")
113
+
114
+ output = ""
115
+ completion_started = False
116
+ for chunk in stream:
117
+ # Extract the new content from the delta field
118
+ content = getattr(chunk.choices[0].delta, "content", "")
119
+ output += content
120
+
121
+ parts = output.split("[BEGIN FINAL RESPONSE]")
122
+
123
+ if len(parts) > 1:
124
+ if parts[1].endswith("[END FINAL RESPONSE]"):
125
+ parts[1] = parts[1].replace("[END FINAL RESPONSE]", "")
126
+ if parts[1].endswith("[END FINAL RESPONSE]\n<|end|>"):
127
+ parts[1] = parts[1].replace("[END FINAL RESPONSE]\n<|end|>", "")
128
+
129
+ history[-1 if not completion_started else -2] = gr.ChatMessage(
130
+ role="assistant",
131
+ content=parts[0],
132
+ metadata={"title": "🧠 Thought"}
133
+ )
134
+ if completion_started:
135
+ history[-1] = gr.ChatMessage(
136
  role="assistant",
137
+ content=parts[1]
138
+ )
139
+ elif len(parts) > 1 and not completion_started:
140
+ completion_started = True
 
 
141
  history.append(gr.ChatMessage(
142
  role="assistant",
143
+ content=parts[1]
144
  ))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
145
 
146
+ # only yield the most recent assistant messages
147
+ messages_to_yield = history[-1:] if not completion_started else history[-2:]
148
+ # _check_format(messages_to_yield, "messages")
149
+ yield messages_to_yield
 
 
 
150
 
151
+ log_message(f"Final History: {history}")
152
+ _check_format(history, "messages")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
153
 
 
 
154
 
155
+ # Add the model display name and Hugging Face URL to the description
156
+ # description = f"### Model: [{MODE_DISPLAY_NAME}]({MODEL_HF_URL})"
 
 
 
 
 
 
 
 
 
 
 
 
 
157
 
158
+ print(f"Running model {model_config.get('MODE_DISPLAY_NAME')} ({model_config.get('MODEL_NAME')})")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
159
 
160
+ gr.ChatInterface(
161
+ chat_fn,
162
+ title=title,
163
+ description=description,
164
+ theme=gr.themes.Default(primary_hue="green"),
165
+ type="messages",
166
+ ).launch()
gradio_runner.py DELETED
@@ -1,10 +0,0 @@
1
- import re
2
- import sys
3
- from gradio.cli import cli
4
-
5
- # This runs a gradio app so that it can be automatically reloaded in the browser
6
- # Example: python gradio_runner.py app.py
7
-
8
- if __name__ == '__main__':
9
- sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0])
10
- sys.exit(cli())
 
 
 
 
 
 
 
 
 
 
 
log_chat.py DELETED
@@ -1,237 +0,0 @@
1
- import csv
2
- import os
3
- import time
4
- from datetime import datetime
5
- from queue import Queue
6
- import threading
7
-
8
- import pandas as pd
9
- from gradio import ChatMessage
10
- from huggingface_hub import HfApi, hf_hub_download
11
-
12
- from timer import Timer
13
- from utils import log_warning, log_info, log_debug, log_error
14
-
15
- HF_TOKEN = os.environ.get("HF_TOKEN")
16
- DATASET_REPO_ID = os.environ.get("APRIEL_PROMPT_DATASET")
17
- CSV_FILENAME = "train.csv"
18
-
19
-
20
- def log_chat(chat_id: str, session_id: str, model_name: str, prompt: str, history: list[str], info: dict) -> None:
21
- log_info(f"log_chat() called for chat: {chat_id}, queue size: {log_chat_queue.qsize()}, model: {model_name}")
22
- log_chat_queue.put((chat_id, session_id, model_name, prompt, history, info))
23
-
24
-
25
- def _log_chat_worker():
26
- while True:
27
- chat_id, session_id, model_name, prompt, history, info = log_chat_queue.get()
28
- try:
29
- try:
30
- _log_chat(chat_id, session_id, model_name, prompt, history, info)
31
- except Exception as e:
32
- log_error(f"Error logging chat: {e}")
33
- finally:
34
- log_chat_queue.task_done()
35
-
36
-
37
- def _log_chat(chat_id: str, session_id: str, model_name: str, prompt: str, history: list[str], info: dict) -> bool:
38
- log_info(f"_log_chat() storing chat {chat_id}")
39
- if DATASET_REPO_ID is None:
40
- log_warning("No dataset repo ID provided. Skipping logging of prompt.")
41
- return False
42
- if HF_TOKEN is None:
43
- log_warning("No HF token provided. Skipping logging of prompt.")
44
- return False
45
-
46
- log_timer = Timer('log_chat')
47
- log_timer.start()
48
-
49
- # Initialize HF API
50
- api = HfApi(token=HF_TOKEN)
51
-
52
- # Check if the dataset repo exists, if not, create it
53
- try:
54
- repo_info = api.repo_info(repo_id=DATASET_REPO_ID, repo_type="dataset")
55
- log_debug(f"log_chat() --> Dataset repo found: {repo_info.id} private={repo_info.private}")
56
- except Exception: # Create new dataset if none exists
57
- log_debug(f"log_chat() --> No dataset repo found, creating a new one...")
58
- api.create_repo(repo_id=DATASET_REPO_ID, repo_type="dataset", private=True)
59
-
60
- # Ensure messages are in the correct format
61
- messages = [
62
- {"role": item.role, "content": item.content,
63
- "type": "thought" if item.metadata else "completion"} if isinstance(
64
- item, ChatMessage) else item
65
- for item in history
66
- if isinstance(item, dict) and "role" in item and "content" in item or isinstance(item, ChatMessage)
67
- ]
68
- if len(messages) != len(history):
69
- log_warning("log_chat() --> Some messages in history are missing 'role' or 'content' keys.")
70
-
71
- user_messages_count = sum(1 for item in messages if isinstance(item, dict) and item.get("role") == "user")
72
-
73
- # These must match the keys in the new row
74
- expected_headers = ["timestamp", "chat_id", "turns", "prompt", "messages", "model", "session_id", "info"]
75
- # Prepare new data row
76
- new_row = {
77
- "timestamp": datetime.now().isoformat(),
78
- "chat_id": chat_id,
79
- "turns": user_messages_count,
80
- "prompt": prompt,
81
- "messages": messages,
82
- "model": model_name,
83
- "session_id": session_id,
84
- "info": info,
85
- }
86
- log_timer.add_step("Prepared new data row")
87
-
88
- # Try to download existing CSV with retry logic
89
- max_retries = 3
90
- retry_count = 0
91
- file_exists = False
92
- while retry_count < max_retries:
93
- try:
94
- csv_path = hf_hub_download(
95
- repo_id=DATASET_REPO_ID,
96
- filename=CSV_FILENAME,
97
- repo_type="dataset",
98
- token=HF_TOKEN # Only needed if not already logged in
99
- )
100
- pd.read_csv(csv_path)
101
- file_exists = True
102
- log_debug(f"log_chat() --> Downloaded existing CSV with {len(pd.read_csv(csv_path))} rows")
103
- break # Success, exit the loop
104
- except Exception as e:
105
- retry_count += 1
106
- if retry_count < max_retries:
107
- retry_delay = 2 * retry_count # Exponential backoff: 2s, 4s, 6s, 8s
108
- log_warning(
109
- f"log_chat() --> Download attempt {retry_count} failed: {e}. Retrying in {retry_delay} seconds...")
110
- time.sleep(retry_delay)
111
- else:
112
- log_warning(f"log_chat() --> Failed to download CSV after {max_retries} attempts: {e}")
113
- file_exists = False
114
-
115
- log_timer.add_step(f"Downloaded existing CSV (attempts: {retry_count + 1})")
116
-
117
- # Handle the case where the CSV file does not exist or is invalid
118
- if file_exists and len(pd.read_csv(csv_path)) == 0:
119
- log_warning(f"log_chat() --> CSV {csv_path} exists but is empty, will create a new one.")
120
- dump_hub_csv()
121
- file_exists = False
122
- elif file_exists:
123
- # Check that the headers match our standard headers of "timestamp", "chat_id", "turns", ...
124
- existing_headers = pd.read_csv(csv_path).columns.tolist()
125
- if set(existing_headers) != set(expected_headers):
126
- log_warning(f"log_chat() --> CSV {csv_path} has unexpected headers: {existing_headers}. "
127
- f"\nExpected {existing_headers} "
128
- f"Will create a new one.")
129
- dump_hub_csv()
130
- file_exists = False
131
- else:
132
- log_debug(f"log_chat() --> CSV {csv_path} has expected headers: {existing_headers}")
133
-
134
- # Write out the new row to the CSV file (append isn't working in HF container, so recreate each time)
135
- log_debug(f"log_chat() --> Writing CSV file, file_exists={file_exists}")
136
- try:
137
- with open(CSV_FILENAME, "w", newline="\n") as f:
138
- writer = csv.DictWriter(f, fieldnames=new_row.keys())
139
- writer.writeheader() # Always write the header
140
- if file_exists:
141
- for _, row in pd.read_csv(csv_path).iterrows():
142
- writer.writerow(row.to_dict()) # Write existing rows
143
- writer.writerow(new_row) # Write the new row
144
-
145
- log_debug("log_chat() --> Wrote out CSV with new row")
146
- # dump_local_csv()
147
- except Exception as e:
148
- log_error(f"log_chat() --> Error writing to CSV: {e}")
149
- return False
150
-
151
- # Upload updated CSV
152
- api.upload_file(
153
- path_or_fileobj=CSV_FILENAME,
154
- path_in_repo=CSV_FILENAME,
155
- repo_id=DATASET_REPO_ID,
156
- repo_type="dataset",
157
- commit_message=f"Added new chat entry at {datetime.now().isoformat()}"
158
- )
159
- log_timer.add_step("Uploaded updated CSV")
160
- log_timer.end()
161
- log_debug("log_chat() --> Finished logging chat")
162
- log_debug(log_timer.formatted_result())
163
-
164
- return True
165
-
166
-
167
- def dump_hub_csv():
168
- # Verify the file contents by loading it from the hub and printing it out
169
- try:
170
- csv_path = hf_hub_download(
171
- repo_id=DATASET_REPO_ID,
172
- filename=CSV_FILENAME,
173
- repo_type="dataset",
174
- token=HF_TOKEN # Only needed if not already logged in
175
- )
176
- df = pd.read_csv(csv_path)
177
- log_info(df)
178
- if (df.empty):
179
- # show raw contents of downloaded csv file
180
- log_info("Raw file contents:")
181
- with open(csv_path, 'r') as f:
182
- print(f.read())
183
- except Exception as e:
184
- log_error(f"Error loading CSV from hub: {e}")
185
-
186
-
187
- def dump_local_csv():
188
- # Verify the file contents by loading it from the local file and printing it out
189
- try:
190
- df = pd.read_csv(CSV_FILENAME)
191
- log_info(df)
192
- except Exception as e:
193
- log_error(f"Error loading CSV from local file: {e}")
194
-
195
-
196
- def test_log_chat():
197
- # Example usage
198
- chat_id = "12345"
199
- session_id = "67890"
200
- model_name = "Apriel-Model"
201
- prompt = "Hello"
202
- history = [{"role": "user", "content": prompt}, {"role": "assistant", "content": "Hi there!"}]
203
- prompt = "100 + 1"
204
- history = [{'role': 'user', 'content': prompt}, ChatMessage(
205
- content='Okay, that\'s a simple addition problem. , answer is 2.\n', role='assistant',
206
- metadata={'title': '🧠 Thought'}, options=[]),
207
- ChatMessage(content='\nThe result of adding 1 and 1 is:\n\n**2**\n', role='assistant', metadata={},
208
- options=[])
209
- ]
210
- info = {"additional_info": "Some extra data"}
211
-
212
- log_debug("Starting test_log_chat()")
213
- dump_hub_csv()
214
- log_chat(chat_id, session_id, model_name, prompt, history, info)
215
- log_debug("log_chat 1 returned")
216
- log_chat(chat_id, session_id, model_name, prompt + " + 2", history, info)
217
- log_debug("log_chat 2 returned")
218
- log_chat(chat_id, session_id, model_name, prompt + " + 3", history, info)
219
- log_debug("log_chat 3 returned")
220
- log_chat(chat_id, session_id, model_name, prompt + " + 4", history, info)
221
- log_debug("log_chat 4 returned")
222
-
223
- sleep_seconds = 10
224
- log_debug(f"Sleeping {sleep_seconds} seconds to let it finish and log the result.")
225
- time.sleep(sleep_seconds)
226
- log_debug("Finished sleeping.")
227
- dump_hub_csv()
228
-
229
-
230
- # Create a queue for logging chat messages
231
- log_chat_queue = Queue()
232
-
233
- # Start the worker thread
234
- threading.Thread(target=_log_chat_worker, daemon=True).start()
235
-
236
- if __name__ == "__main__":
237
- test_log_chat()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
requirements.txt CHANGED
@@ -1,5 +1,3 @@
1
  huggingface_hub==0.28.1
2
  gradio==5.29.0
3
- openai~=1.78.0
4
- pandas~=2.2.3
5
- datasets~=2.14.4
 
1
  huggingface_hub==0.28.1
2
  gradio==5.29.0
3
+ openai
 
 
styles.css DELETED
@@ -1,118 +0,0 @@
1
- :root {
2
- --color-grey-50: #f9fafb;
3
- }
4
-
5
- .toast-body {
6
- background-color: var(--color-grey-50);
7
- }
8
-
9
- .html-container:has(.css-styles) {
10
- padding: 0;
11
- margin: 0;
12
- }
13
-
14
- .css-styles {
15
- height: 0;
16
- }
17
-
18
- .model-message {
19
- text-align: end;
20
- }
21
-
22
- .model-dropdown-container {
23
- display: flex;
24
- align-items: center;
25
- gap: 10px;
26
- padding: 0;
27
- }
28
-
29
- .chatbot {
30
- max-height: 1400px;
31
- }
32
-
33
- button.cancel {
34
- border: var(--button-border-width) solid var(--button-cancel-border-color);
35
- background: var(--button-cancel-background-fill);
36
- color: var(--button-cancel-text-color);
37
- box-shadow: var(--button-cancel-shadow);
38
- }
39
-
40
- button.cancel:hover, .cancel[disabled] {
41
- background: var(--button-cancel-background-fill-hover);
42
- color: var(--button-cancel-text-color-hover);
43
- }
44
-
45
- .opt-out-message {
46
- top: 8px;
47
- }
48
-
49
- .opt-out-message .html-container, .opt-out-checkbox label {
50
- font-size: 14px !important;
51
- padding: 0 !important;
52
- margin: 0 !important;
53
- color: var(--neutral-400) !important;
54
- }
55
-
56
- @media (max-width: 800px) {
57
- .responsive-row {
58
- flex-direction: column;
59
- }
60
-
61
- .model-message {
62
- text-align: start;
63
- font-size: 10px !important;
64
- }
65
-
66
- .model-dropdown-container {
67
- flex-direction: column;
68
- align-items: flex-start;
69
- }
70
-
71
- .chatbot {
72
- max-height: 800px;
73
- }
74
- }
75
-
76
- @media (max-width: 400px) {
77
- .responsive-row {
78
- flex-direction: column;
79
- }
80
-
81
- .model-message {
82
- text-align: start;
83
- font-size: 10px !important;
84
- }
85
-
86
- .model-dropdown-container {
87
- flex-direction: column;
88
- align-items: flex-start;
89
- }
90
-
91
- .chatbot {
92
- max-height: 360px;
93
- }
94
- }
95
-
96
- @media (max-width: 1280px) {
97
- .chatbot {
98
- max-height: 900px;
99
- }
100
- }
101
-
102
- @media (max-height: 932px) {
103
- .chatbot {
104
- max-height: calc(100dvh - 400px);
105
- }
106
- }
107
-
108
- @media (max-height: 1280px) {
109
- .chatbot {
110
- max-height: calc(100dvh - 400px);
111
- }
112
- }
113
-
114
- @media (min-height: 1281px) {
115
- .chatbot {
116
- /*max-height: calc(100dvh - 400px);*/
117
- }
118
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
theme.py DELETED
@@ -1,148 +0,0 @@
1
- from typing import Iterable
2
- from gradio.themes import Soft
3
- from gradio.themes.utils import colors, fonts, sizes
4
-
5
- colors.teal_gray = colors.Color(
6
- name="teal_gray",
7
- c50="#e8f1f4",
8
- c100="#cddde3",
9
- c200="#a8c3cf",
10
- c300="#7da6b8",
11
- c400="#588aa2",
12
- c500="#3d6e87",
13
- c600="#335b70",
14
- c700="#2b495a",
15
- c800="#2c5364",
16
- c900="#233f4b",
17
- c950="#1b323c",
18
- )
19
-
20
- colors.red_gray = colors.Color(
21
- name="red_gray",
22
- c50="#f7eded",
23
- c100="#f5dcdc",
24
- c200="#efb4b4",
25
- c300="#e78f8f",
26
- c400="#d96a6a",
27
- c500="#c65353",
28
- c600="#b24444",
29
- c700="#8f3434",
30
- c800="#732d2d",
31
- c900="#5f2626",
32
- c950="#4d2020",
33
- )
34
-
35
-
36
- class Apriel(Soft):
37
- def __init__(
38
- self,
39
- *,
40
- primary_hue: colors.Color | str = colors.gray,
41
- secondary_hue: colors.Color | str = colors.teal_gray,
42
- neutral_hue: colors.Color | str = colors.slate,
43
- # spacing_size: sizes.Size | str = sizes.spacing_md,
44
- # radius_size: sizes.Size | str = sizes.radius_md,
45
- text_size: sizes.Size | str = sizes.text_md,
46
- font: fonts.Font
47
- | str
48
- | Iterable[fonts.Font | str] = (
49
- fonts.GoogleFont("Inconsolata"),
50
- "Arial",
51
- "sans-serif",
52
- ),
53
- font_mono: fonts.Font
54
- | str
55
- | Iterable[fonts.Font | str] = (
56
- fonts.GoogleFont("IBM Plex Mono"),
57
- "ui-monospace",
58
- "monospace",
59
- ),
60
- ):
61
- super().__init__(
62
- primary_hue=primary_hue,
63
- secondary_hue=secondary_hue,
64
- neutral_hue=neutral_hue,
65
- # spacing_size=spacing_size,
66
- # radius_size=radius_size,
67
- text_size=text_size,
68
- font=font,
69
- font_mono=font_mono,
70
- )
71
- super().set(
72
- background_fill_primary="*primary_50",
73
- background_fill_primary_dark="*primary_900",
74
-
75
- body_background_fill="linear-gradient(135deg, *primary_200, *primary_100)",
76
- body_background_fill_dark="linear-gradient(135deg, *primary_900, *primary_800)",
77
-
78
- button_primary_text_color="white",
79
- button_primary_text_color_hover="black",
80
- button_primary_background_fill="linear-gradient(90deg, *secondary_400, *secondary_400)",
81
- button_primary_background_fill_hover="linear-gradient(90deg, *secondary_300, *secondary_300)",
82
- button_primary_background_fill_dark="linear-gradient(90deg, *secondary_600, *secondary_800)",
83
- button_primary_background_fill_hover_dark="linear-gradient(90deg, *secondary_500, *secondary_500)",
84
-
85
- button_secondary_text_color="black",
86
- button_secondary_text_color_hover="white",
87
- button_secondary_background_fill="linear-gradient(90deg, *primary_300, *primary_300)",
88
- button_secondary_background_fill_hover="linear-gradient(90deg, *primary_400, *primary_400)",
89
- button_secondary_background_fill_dark="linear-gradient(90deg, *primary_500, *primary_600)",
90
- button_secondary_background_fill_hover_dark="linear-gradient(90deg, *primary_500, *primary_500)",
91
-
92
- button_cancel_background_fill=f"linear-gradient(90deg, {colors.red_gray.c400}, {colors.red_gray.c500})",
93
- button_cancel_background_fill_dark=f"linear-gradient(90deg, {colors.red_gray.c700}, {colors.red_gray.c800})",
94
- button_cancel_background_fill_hover=f"linear-gradient(90deg, {colors.red_gray.c500}, {colors.red_gray.c600})",
95
- button_cancel_background_fill_hover_dark=f"linear-gradient(90deg, {colors.red_gray.c800}, {colors.red_gray.c900})",
96
- # button_cancel_background_fill=f"linear-gradient(90deg, {colors.red.c400}, {colors.red.c500})",
97
- # button_cancel_background_fill_dark=f"linear-gradient(90deg, {colors.red.c700}, {colors.red.c800})",
98
- # button_cancel_background_fill_hover=f"linear-gradient(90deg, {colors.red.c500}, {colors.red.c600})",
99
- # button_cancel_background_fill_hover_dark=f"linear-gradient(90deg, {colors.red.c800}, {colors.red.c900})",
100
- button_cancel_text_color="white",
101
- button_cancel_text_color_dark="white",
102
- button_cancel_text_color_hover="white",
103
- button_cancel_text_color_hover_dark="white",
104
-
105
- # button_cancel_background_fill=colors.red.c500,
106
- # button_cancel_background_fill_dark=colors.red.c700,
107
- # button_cancel_background_fill_hover=colors.red.c600,
108
- # button_cancel_background_fill_hover_dark=colors.red.c800,
109
- # button_cancel_text_color="white",
110
- # button_cancel_text_color_dark="white",
111
- # button_cancel_text_color_hover="white",
112
- # button_cancel_text_color_hover_dark="white",
113
-
114
- slider_color="*secondary_300",
115
- slider_color_dark="*secondary_600",
116
- block_title_text_weight="600",
117
- block_border_width="3px",
118
- block_shadow="*shadow_drop_lg",
119
- button_primary_shadow="*shadow_drop_lg",
120
- button_large_padding="11px",
121
-
122
- color_accent_soft="*primary_100",
123
-
124
- block_label_background_fill="*primary_200",
125
-
126
- )
127
-
128
-
129
- apriel = Apriel()
130
-
131
- # with gr.Blocks(theme=apriel) as demo:
132
- # textbox = gr.Textbox(label="Name")
133
- # slider = gr.Slider(label="Count", minimum=0, maximum=100, step=1)
134
- # with gr.Row():
135
- # button = gr.Button("Submit", variant="primary")
136
- # clear = gr.Button("Clear")
137
- # output = gr.Textbox(label="Output")
138
- #
139
- #
140
- # def repeat(name, count):
141
- # time.sleep(3)
142
- # return name * count
143
- #
144
- #
145
- # button.click(repeat, [textbox, slider], output)
146
- #
147
- # if __name__ == "__main__":
148
- # demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
timer.py DELETED
@@ -1,114 +0,0 @@
1
- import time
2
- import json
3
-
4
-
5
- class Timer:
6
- def __init__(self, name=None):
7
- self.name = name
8
- self.start_time = None
9
- self.steps = []
10
- self.total_time = None
11
-
12
- def clear(self):
13
- self.start_time = None
14
- self.steps = []
15
- self.total_time = None
16
-
17
- def start(self):
18
- """Start the timer."""
19
- self.start_time = time.time()
20
-
21
- def is_running(self):
22
- return self.start_time is not None
23
-
24
- def add_step(self, step_name):
25
- """Add a step with its duration since the last step or start."""
26
- if self.start_time is None:
27
- self.start()
28
-
29
- current_time = time.time()
30
- if not self.steps:
31
- elapsed = current_time - self.start_time
32
- else:
33
- elapsed = current_time - self.steps[-1]['timestamp']
34
-
35
- self.steps.append({
36
- "step_name": step_name,
37
- "duration": round(elapsed, 4),
38
- "total_duration": round(current_time - self.start_time, 4),
39
- "timestamp": current_time
40
- })
41
-
42
- def end(self):
43
- """End the timer and calculate the total duration."""
44
- if self.start_time is None:
45
- raise RuntimeError("Timer has not been started.")
46
-
47
- if not self.steps:
48
- raise RuntimeError("No steps have been added.")
49
-
50
- self.total_time = time.time() - self.start_time
51
-
52
- def to_json(self):
53
- """Return a JSON of the timing steps."""
54
- if self.total_time is None:
55
- raise RuntimeError("Timer has not been ended.")
56
-
57
- output_steps = {}
58
- for step in self.steps:
59
- output_steps[step["step_name"]] = step["duration"]
60
-
61
- highlights = {"total_time": round(self.total_time, 4)}
62
-
63
- if self.name:
64
- highlights = {"name": self.name, **highlights}
65
-
66
- output = {
67
- **highlights,
68
- **output_steps
69
- }
70
- return output
71
-
72
- def to_json_str(self):
73
- """Return a human-readable JSON of the timing steps."""
74
- return json.dumps(self.to_json(), indent=4)
75
-
76
- def formatted_result(self):
77
- """Return a list of the steps, their duration, and total duration."""
78
- if self.total_time is None:
79
- raise RuntimeError("Timer has not been ended.")
80
- line_buffer = []
81
- if self.name:
82
- line_buffer.append(f"Timer: {self.name}")
83
- for step in self.steps:
84
- line_buffer.append(f"[{step['duration']:05.2f}s, {step['total_duration']:05.2f}s] {step['step_name']}")
85
- # for step in self.steps:
86
- # line_buffer.append(f"{step['step_name']}: {step['duration']:.2f}s ({step['total_duration']:.2f}s)")
87
- line_buffer.append(f"Total time: {self.total_time:.2f}s")
88
- return "\n".join(line_buffer)
89
-
90
- def log_formatted_result(self):
91
- print(self.formatted_result())
92
-
93
-
94
- def example():
95
- # Example usage
96
- timer = Timer()
97
- timer.start()
98
-
99
- # Simulating some steps
100
- time.sleep(1) # Simulate work for step 1
101
- timer.add_step("Step 1")
102
-
103
- time.sleep(2) # Simulate work for step 2
104
- timer.add_step("Step 2")
105
-
106
- timer.end()
107
-
108
- # Print the timer output
109
- print(timer.formatted_result())
110
- print(timer.to_json_str())
111
-
112
-
113
- if __name__ == "__main__":
114
- example()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
utils.py DELETED
@@ -1,127 +0,0 @@
1
- import os
2
- import sys
3
- import time
4
- from functools import wraps
5
- from typing import Any, Literal
6
-
7
- from gradio import ChatMessage
8
- from gradio.components.chatbot import Message
9
-
10
- COMMUNITY_POSTFIX_URL = "/discussions"
11
- DEBUG_MODE = False or os.environ.get("DEBUG_MODE") == "True"
12
- DEBUG_MODEL = False or os.environ.get("DEBUG_MODEL") == "True"
13
-
14
- models_config = {
15
- "Apriel-Nemotron-15b-Thinker": {
16
- "MODEL_DISPLAY_NAME": "Apriel-Nemotron-15b-Thinker",
17
- "MODEL_HF_URL": "https://huggingface.co/ServiceNow-AI/Apriel-Nemotron-15b-Thinker",
18
- "MODEL_NAME": os.environ.get("MODEL_NAME_NEMO_15B"),
19
- "VLLM_API_URL": os.environ.get("VLLM_API_URL_NEMO_15B"),
20
- "AUTH_TOKEN": os.environ.get("AUTH_TOKEN"),
21
- "REASONING": True
22
- },
23
- "Apriel-5b": {
24
- "MODEL_DISPLAY_NAME": "Apriel-5b",
25
- "MODEL_HF_URL": "https://huggingface.co/ServiceNow-AI/Apriel-5B-Instruct",
26
- "MODEL_NAME": os.environ.get("MODEL_NAME_5B"),
27
- "VLLM_API_URL": os.environ.get("VLLM_API_URL_5B"),
28
- "AUTH_TOKEN": os.environ.get("AUTH_TOKEN"),
29
- "REASONING": False
30
- }
31
- }
32
-
33
-
34
- def get_model_config(model_name: str) -> dict:
35
- config = models_config.get(model_name)
36
- if not config:
37
- raise ValueError(f"Model {model_name} not found in models_config")
38
- if not config.get("MODEL_NAME"):
39
- raise ValueError(f"Model name not found in config for {model_name}")
40
- if not config.get("VLLM_API_URL"):
41
- raise ValueError(f"VLLM API URL not found in config for {model_name}")
42
-
43
- return config
44
-
45
-
46
- def _log_message(prefix, message, icon=""):
47
- timestamp = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
48
- if len(icon) > 0:
49
- icon = f"{icon} "
50
- print(f"{timestamp}: {prefix} {icon}{message}")
51
-
52
-
53
- def log_debug(message):
54
- if DEBUG_MODE is True:
55
- _log_message("DEBUG", message)
56
-
57
-
58
- def log_info(message):
59
- _log_message("INFO ", message)
60
-
61
-
62
- def log_warning(message):
63
- _log_message("WARN ", message, "⚠️")
64
-
65
-
66
- def log_error(message):
67
- _log_message("ERROR", message, "‼️")
68
-
69
-
70
- # Gradio 5.0.1 had issues with checking the message formats. 5.29.0 does not!
71
- def check_format(messages: Any, type: Literal["messages", "tuples"] = "messages") -> None:
72
- if not DEBUG_MODE:
73
- return
74
-
75
- if type == "messages":
76
- all_valid = all(
77
- isinstance(message, dict)
78
- and "role" in message
79
- and "content" in message
80
- or isinstance(message, ChatMessage | Message)
81
- for message in messages
82
- )
83
- if not all_valid:
84
- # Display which message is not valid
85
- for i, message in enumerate(messages):
86
- if not (isinstance(message, dict) and
87
- "role" in message and
88
- "content" in message) and not isinstance(message, ChatMessage | Message):
89
- print(f"_check_format() --> Invalid message at index {i}: {message}\n", file=sys.stderr)
90
- break
91
-
92
- raise Exception(
93
- "Data incompatible with messages format. Each message should be a dictionary with 'role' and 'content' keys or a ChatMessage object."
94
- )
95
- # else:
96
- # print("_check_format() --> All messages are valid.")
97
- elif not all(
98
- isinstance(message, (tuple, list)) and len(message) == 2
99
- for message in messages
100
- ):
101
- raise Exception(
102
- "Data incompatible with tuples format. Each message should be a list of length 2."
103
- )
104
-
105
-
106
- # Adds timing info for a gradio event handler (non-generator functions)
107
- def logged_event_handler(log_msg='', event_handler=None, log_timer=None, clear_timer=False):
108
- @wraps(event_handler)
109
- def wrapped_event_handler(*args, **kwargs):
110
- # Log before
111
- if log_timer:
112
- if clear_timer:
113
- log_timer.clear()
114
- log_timer.add_step(f"Start: {log_debug}")
115
- log_debug(f"::: Before event: {log_msg}")
116
-
117
- # Call the original event handler
118
- result = event_handler(*args, **kwargs)
119
-
120
- # Log after
121
- if log_timer:
122
- log_timer.add_step(f"Completed: {log_msg}")
123
- log_debug(f"::: After event: {log_msg}")
124
-
125
- return result
126
-
127
- return wrapped_event_handler