File size: 7,592 Bytes
b85866b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import numpy as np
import torch
import torchvision.transforms as T
from PIL import Image
from torchvision.transforms.functional import InterpolationMode
from transformers import AutoModel, AutoTokenizer
import time
import argparse
import sys
"""

url: https://huggingface.co/5CD-AI/Vintern-1B-v3_5

"""
# Ensure UTF-8 console output (fixes UnicodeEncodeError on Windows PowerShell)
try:
    sys.stdout.reconfigure(encoding='utf-8')
    sys.stderr.reconfigure(encoding='utf-8')
except Exception:
    pass
# pip install ninja packaging wheel
# pip install flash-attn --no-build-isolation
# Khởi tạo timer
start_time = time.time()

# Chọn device (GPU nếu có)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# Runtime backend optimizations
torch.backends.cudnn.benchmark = True
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True

print("Using device:", device)

IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)

def build_transform(input_size):
    return T.Compose([
        T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
        T.Resize((input_size, input_size), interpolation=InterpolationMode.BILINEAR),
        T.ToTensor(),
        T.Normalize(mean=IMAGENET_MEAN, std=IMAGENET_STD)
    ])

def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
    best_ratio_diff = float('inf')
    best_ratio = (1, 1)
    area = width * height
    for ratio in target_ratios:
        target_aspect_ratio = ratio[0] / ratio[1]
        ratio_diff = abs(aspect_ratio - target_aspect_ratio)
        if ratio_diff < best_ratio_diff:
            best_ratio_diff = ratio_diff
            best_ratio = ratio
        elif ratio_diff == best_ratio_diff:
            if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
                best_ratio = ratio
    return best_ratio

def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
    orig_width, orig_height = image.size
    aspect_ratio = orig_width / orig_height

    target_ratios = set(
        (i, j) for n in range(min_num, max_num + 1) 
        for i in range(1, n + 1) 
        for j in range(1, n + 1) 
        if i * j <= max_num and i * j >= min_num
    )
    target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])

    target_aspect_ratio = find_closest_aspect_ratio(
        aspect_ratio, target_ratios, orig_width, orig_height, image_size)

    target_width = image_size * target_aspect_ratio[0]
    target_height = image_size * target_aspect_ratio[1]
    blocks = target_aspect_ratio[0] * target_aspect_ratio[1]

    resized_img = image.resize((target_width, target_height))
    processed_images = []
    for i in range(blocks):
        box = (
            (i % (target_width // image_size)) * image_size,
            (i // (target_width // image_size)) * image_size,
            ((i % (target_width // image_size)) + 1) * image_size,
            ((i // (target_width // image_size)) + 1) * image_size
        )
        split_img = resized_img.crop(box)
        processed_images.append(split_img)
    assert len(processed_images) == blocks

    if use_thumbnail and len(processed_images) != 1:
        thumbnail_img = image.resize((image_size, image_size))
        processed_images.append(thumbnail_img)
    return processed_images

def load_image(image_file, input_size=448, max_num=12, use_thumbnail=False, pin_memory=False):
    image = Image.open(image_file).convert('RGB')
    transform = build_transform(input_size=input_size)
    # Fast path when using only one tile and no thumbnail
    if max_num == 1 and not use_thumbnail:
        pixel_values = transform(image).unsqueeze(0)
    else:
        images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=use_thumbnail, max_num=max_num)
        pixel_values = [transform(img) for img in images]
        pixel_values = torch.stack(pixel_values)
    if pin_memory:
        pixel_values = pixel_values.pin_memory()
    return pixel_values

# Load model lên GPU
model_load_start = time.time()
model = AutoModel.from_pretrained(
    "5CD-AI/Vintern-1B-v3_5",
    torch_dtype=torch.float16,
    low_cpu_mem_usage=True,
    trust_remote_code=True,
    use_flash_attn=True,   # nếu đã cài flash-attn có thể đổi thành True
).to(device).eval()
model_load_end = time.time()

tokenizer = AutoTokenizer.from_pretrained(
    "5CD-AI/Vintern-1B-v3_5", 
    trust_remote_code=True, 
    use_fast=False
)

def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--image', type=str, default=r'C:\Users\ADMIN\Downloads\vintern_api\imgs\6.TKngknhnCMC_00001.png')
    parser.add_argument('--input_size', type=int, default=384)
    parser.add_argument('--max_num', type=int, default=1)
    parser.add_argument('--use_thumbnail', action='store_true', default=False)
    parser.add_argument('--max_new_tokens', type=int, default=128)
    parser.add_argument('--num_beams', type=int, default=1)
    parser.add_argument('--do_sample', action='store_true', default=False)
    parser.add_argument('--repetition_penalty', type=float, default=2.5)
    parser.add_argument('--question', type=str, default='<image>\nTrích xuất thông tin chính trong ảnh và trả về dạng markdown.')
    parser.add_argument('--compile', action='store_true', default=False)
    args = parser.parse_args()

    pin_mem = device.type == 'cuda'

    # Validate input size for this model family (fallback to 448 if incompatible)
    valid_input_size = args.input_size
    try:
        # Many InternVL/Vintern checkpoints expect 448 per tile
        if args.input_size != 448:
            print(f"[warn] input_size {args.input_size} may be incompatible; falling back to 448 for stability.")
            valid_input_size = 448
    except Exception:
        valid_input_size = 448

    # Image preprocessing and non-blocking GPU transfer
    pixel_values = load_image(
        args.image,
        input_size=valid_input_size,
        max_num=args.max_num,
        use_thumbnail=args.use_thumbnail,
        pin_memory=pin_mem
    )
    pixel_values = pixel_values.contiguous(memory_format=torch.channels_last)
    pixel_values = pixel_values.to(device=device, dtype=torch.float16, non_blocking=True)

    # Optional compile for speedup (PyTorch 2.x). Fallback silently if unsupported.
    if args.compile:
        try:
            model_forward = model.forward
            model.forward = torch.compile(model_forward, mode='reduce-overhead', fullgraph=False)  # type: ignore
        except Exception:
            pass

    generation_config = dict(
        max_new_tokens=args.max_new_tokens,
        do_sample=args.do_sample,
        num_beams=args.num_beams,
        repetition_penalty=args.repetition_penalty
    )

    with torch.inference_mode():
        response, history = model.chat(
            tokenizer,
            pixel_values,
            args.question,
            generation_config,
            history=None,
            return_history=True
        )

    print(f'User: {args.question}\nAssistant: {response}')

    end_time = time.time()
    print(f'Model load: {model_load_end - model_load_start:.2f}s  |  Total: {end_time - start_time:.2f}s')

    del pixel_values
    if device.type == 'cuda':
        torch.cuda.empty_cache()


if __name__ == '__main__':
    main()