Spaces:
Running
Running
from pathlib import Path | |
from adapters.ml.fast_trainer.Paragraph import Paragraph | |
from domain.PdfSegment import PdfSegment | |
from pdf_features import PdfToken | |
from pdf_token_type_labels import TokenType | |
from adapters.ml.pdf_tokens_type_trainer.TokenFeatures import TokenFeatures | |
from adapters.ml.pdf_tokens_type_trainer.TokenTypeTrainer import TokenTypeTrainer | |
class ParagraphExtractorTrainer(TokenTypeTrainer): | |
def get_context_features(self, token_features: TokenFeatures, page_tokens: list[PdfToken], token_index: int): | |
token_row_features = list() | |
first_token_from_context = token_index - self.model_configuration.context_size | |
for i in range(self.model_configuration.context_size * 2): | |
first_token = page_tokens[first_token_from_context + i] | |
second_token = page_tokens[first_token_from_context + i + 1] | |
features = token_features.get_features(first_token, second_token, page_tokens) | |
features += self.get_paragraph_extraction_features(first_token, second_token) | |
token_row_features.extend(features) | |
return token_row_features | |
def get_paragraph_extraction_features(first_token: PdfToken, second_token: PdfToken) -> list[int]: | |
one_hot_token_type_1 = [1 if token_type == first_token.token_type else 0 for token_type in TokenType] | |
one_hot_token_type_2 = [1 if token_type == second_token.token_type else 0 for token_type in TokenType] | |
return one_hot_token_type_1 + one_hot_token_type_2 | |
def loop_token_next_token(self): | |
for pdf_features in self.pdfs_features: | |
for page in pdf_features.pages: | |
if not page.tokens: | |
continue | |
if len(page.tokens) == 1: | |
yield page, page.tokens[0], page.tokens[0] | |
for token, next_token in zip(page.tokens, page.tokens[1:]): | |
yield page, token, next_token | |
def get_pdf_segments(self, paragraph_extractor_model_path: str | Path) -> list[PdfSegment]: | |
paragraphs = self.get_paragraphs(paragraph_extractor_model_path) | |
pdf_segments = [PdfSegment.from_pdf_tokens(paragraph.tokens, paragraph.pdf_name) for paragraph in paragraphs] | |
return pdf_segments | |
def get_paragraphs(self, paragraph_extractor_model_path) -> list[Paragraph]: | |
self.predict(paragraph_extractor_model_path) | |
paragraphs: list[Paragraph] = [] | |
last_page = None | |
for page, token, next_token in self.loop_token_next_token(): | |
if last_page != page: | |
last_page = page | |
paragraphs.append(Paragraph([token], page.pdf_name)) | |
if token == next_token: | |
continue | |
if token.prediction: | |
paragraphs[-1].add_token(next_token) | |
continue | |
paragraphs.append(Paragraph([next_token], page.pdf_name)) | |
return paragraphs | |