PDF-Data_Extractor / src /adapters /ml /fast_trainer /ParagraphExtractorTrainer.py
Wasim
Sync: robust vehicle parser + full project
2e237ce
from pathlib import Path
from adapters.ml.fast_trainer.Paragraph import Paragraph
from domain.PdfSegment import PdfSegment
from pdf_features import PdfToken
from pdf_token_type_labels import TokenType
from adapters.ml.pdf_tokens_type_trainer.TokenFeatures import TokenFeatures
from adapters.ml.pdf_tokens_type_trainer.TokenTypeTrainer import TokenTypeTrainer
class ParagraphExtractorTrainer(TokenTypeTrainer):
def get_context_features(self, token_features: TokenFeatures, page_tokens: list[PdfToken], token_index: int):
token_row_features = list()
first_token_from_context = token_index - self.model_configuration.context_size
for i in range(self.model_configuration.context_size * 2):
first_token = page_tokens[first_token_from_context + i]
second_token = page_tokens[first_token_from_context + i + 1]
features = token_features.get_features(first_token, second_token, page_tokens)
features += self.get_paragraph_extraction_features(first_token, second_token)
token_row_features.extend(features)
return token_row_features
@staticmethod
def get_paragraph_extraction_features(first_token: PdfToken, second_token: PdfToken) -> list[int]:
one_hot_token_type_1 = [1 if token_type == first_token.token_type else 0 for token_type in TokenType]
one_hot_token_type_2 = [1 if token_type == second_token.token_type else 0 for token_type in TokenType]
return one_hot_token_type_1 + one_hot_token_type_2
def loop_token_next_token(self):
for pdf_features in self.pdfs_features:
for page in pdf_features.pages:
if not page.tokens:
continue
if len(page.tokens) == 1:
yield page, page.tokens[0], page.tokens[0]
for token, next_token in zip(page.tokens, page.tokens[1:]):
yield page, token, next_token
def get_pdf_segments(self, paragraph_extractor_model_path: str | Path) -> list[PdfSegment]:
paragraphs = self.get_paragraphs(paragraph_extractor_model_path)
pdf_segments = [PdfSegment.from_pdf_tokens(paragraph.tokens, paragraph.pdf_name) for paragraph in paragraphs]
return pdf_segments
def get_paragraphs(self, paragraph_extractor_model_path) -> list[Paragraph]:
self.predict(paragraph_extractor_model_path)
paragraphs: list[Paragraph] = []
last_page = None
for page, token, next_token in self.loop_token_next_token():
if last_page != page:
last_page = page
paragraphs.append(Paragraph([token], page.pdf_name))
if token == next_token:
continue
if token.prediction:
paragraphs[-1].add_token(next_token)
continue
paragraphs.append(Paragraph([next_token], page.pdf_name))
return paragraphs