ShesterG's picture
Add application file
ceeabec
import mediapipe as mp
from mediapipe.tasks import python
from mediapipe.tasks.python import vision
import cv2
import numpy as np
import json
from pathlib import Path
import decord
from typing import Dict, Optional, Tuple, Any
class HolisticDetector:
"""
A class for detecting face, hand, and pose landmarks in videos using MediaPipe.
"""
def __init__(self, face_model_path: str, hand_model_path: str,
min_detection_confidence: float = 0.1,
min_hand_detection_confidence: float = 0.05,
max_faces: int = 6, max_hands: int = 6):
"""
Initialize the HolisticDetector with model paths and configuration.
Args:
face_model_path: Path to the face detection model
hand_model_path: Path to the hand detection model
min_detection_confidence: Minimum confidence for pose detection
min_hand_detection_confidence: Minimum confidence for hand detection
max_faces: Maximum number of faces to detect
max_hands: Maximum number of hands to detect
"""
self.face_model_path = face_model_path
self.hand_model_path = hand_model_path
self.min_detection_confidence = min_detection_confidence
self.min_hand_detection_confidence = min_hand_detection_confidence
self.max_faces = max_faces
self.max_hands = max_hands
self._initialize_detectors()
def _initialize_detectors(self):
"""Initialize the MediaPipe detectors."""
# Initialize face detector
base_options_face = python.BaseOptions(model_asset_path=self.face_model_path)
options_face = vision.FaceLandmarkerOptions(
base_options=base_options_face,
output_face_blendshapes=True,
output_facial_transformation_matrixes=True,
num_faces=self.max_faces
)
self.face_detector = vision.FaceLandmarker.create_from_options(options_face)
# Initialize hand detector
base_options_hand = python.BaseOptions(model_asset_path=self.hand_model_path)
options_hand = vision.HandLandmarkerOptions(
base_options=base_options_hand,
num_hands=self.max_hands,
min_hand_detection_confidence=self.min_hand_detection_confidence
)
self.hand_detector = vision.HandLandmarker.create_from_options(options_hand)
# Initialize holistic model for pose
self.mp_holistic = mp.solutions.holistic.Holistic(
min_detection_confidence=self.min_detection_confidence
)
def detect_frame_landmarks(self, image: np.ndarray) -> Tuple[Dict[str, int], Dict[str, Any]]:
"""
Detect landmarks in a single frame.
Args:
image: Input image as numpy array
Returns:
Tuple of (bounding_boxes_count, landmarks_data)
"""
results = self.mp_holistic.process(image)
mp_image = mp.Image(image_format=mp.ImageFormat.SRGB, data=image)
face_prediction = self.face_detector.detect(mp_image)
hand_prediction = self.hand_detector.detect(mp_image)
bounding_boxes = {}
landmarks_data = {}
# Process face landmarks
if face_prediction.face_landmarks:
bounding_boxes['#face'] = len(face_prediction.face_landmarks)
landmarks_data['face_landmarks'] = []
for face in face_prediction.face_landmarks:
landmarks_face = [[landmark.x, landmark.y, landmark.z] for landmark in face]
landmarks_data['face_landmarks'].append(landmarks_face)
else:
bounding_boxes['#face'] = 0
landmarks_data['face_landmarks'] = None
# Process hand landmarks
if hand_prediction.hand_landmarks:
bounding_boxes['#hands'] = len(hand_prediction.hand_landmarks)
landmarks_data['hand_landmarks'] = []
for hand in hand_prediction.hand_landmarks:
landmarks_hand = [[landmark.x, landmark.y, landmark.z] for landmark in hand]
landmarks_data['hand_landmarks'].append(landmarks_hand)
else:
bounding_boxes['#hands'] = 0
landmarks_data['hand_landmarks'] = None
# Process pose landmarks
if results.pose_landmarks:
bounding_boxes['#pose'] = 1
landmarks_data['pose_landmarks'] = []
pose_landmarks = [[landmark.x, landmark.y, landmark.z] for landmark in results.pose_landmarks.landmark]
landmarks_data['pose_landmarks'].append(pose_landmarks)
else:
bounding_boxes['#pose'] = 0
landmarks_data['pose_landmarks'] = None
return bounding_boxes, landmarks_data
def process_video(self, video_input, save_results: bool = False,
output_dir: Optional[str] = None, video_name: Optional[str] = None) -> Dict[int, Any]:
"""
Process a video and extract landmarks from all frames.
Args:
video_input: Either a path to video file (str) or a decord.VideoReader object
save_results: Whether to save results to files
output_dir: Directory to save results (required if save_results=True)
video_name: Name for output files (required if save_results=True and video_input is VideoReader)
Returns:
Dictionary containing landmarks for each frame
Raises:
FileNotFoundError: If video file doesn't exist
ValueError: If save_results=True but output_dir is None, or if video_name is None when needed
TypeError: If video_input is neither string nor VideoReader
"""
if save_results and output_dir is None:
raise ValueError("output_dir must be provided when save_results=True")
# Handle different input types
if isinstance(video_input, str):
# Input is a file path
video_path = Path(video_input)
if not video_path.exists():
raise FileNotFoundError(f"Video file not found: {video_input}")
try:
video = decord.VideoReader(str(video_path))
except Exception as e:
raise RuntimeError(f"Error loading video {video_input}: {e}")
file_name = video_path.stem
# elif hasattr(video_input, '__len__') and hasattr(video_input, '__getitem__'):
else:
# Input is a VideoReader object or similar
video = video_input
if save_results and video_name is None:
raise ValueError("video_name must be provided when save_results=True and video_input is a VideoReader object")
file_name = video_name or "video"
# else:
# raise TypeError("video_input must be either a file path (str) or a VideoReader object")
result_dict = {}
stats = {}
# Process each frame
for i in range(len(video)):
try:
# frame_rgb = video[i].asnumpy()
frame_rgb = video[i]
if hasattr(video, 'seek'):
video.seek(0)
bounding_boxes, landmarks = self.detect_frame_landmarks(frame_rgb)
result_dict[i] = landmarks
stats[i] = bounding_boxes
except Exception as e:
print(f"Error processing frame {i}: {e}")
result_dict[i] = None
stats[i] = {'#face': 0, '#hands': 0, '#pose': 0}
# Save results if requested
if save_results:
self._save_results(file_name, result_dict, stats, output_dir)
return result_dict
def process_video_frames(self, frames: list, save_results: bool = False,
output_dir: Optional[str] = None, video_name: str = "video") -> Dict[int, Any]:
"""
Process a list of frames and extract landmarks.
Args:
frames: List of frame images as numpy arrays
save_results: Whether to save results to files
output_dir: Directory to save results (required if save_results=True)
video_name: Name for output files
Returns:
Dictionary containing landmarks for each frame
"""
if save_results and output_dir is None:
raise ValueError("output_dir must be provided when save_results=True")
result_dict = {}
stats = {}
# Process each frame
for i, frame in enumerate(frames):
try:
bounding_boxes, landmarks = self.detect_frame_landmarks(frame)
result_dict[i] = landmarks
stats[i] = bounding_boxes
except Exception as e:
print(f"Error processing frame {i}: {e}")
result_dict[i] = None
stats[i] = {'#face': 0, '#hands': 0, '#pose': 0}
# Save results if requested
if save_results:
self._save_results(video_name, result_dict, stats, output_dir)
return result_dict
def _save_results(self, video_name: str, landmarks_data: Dict, stats_data: Dict, output_dir: str):
"""Save landmarks and stats to JSON files."""
output_path = Path(output_dir)
output_path.mkdir(parents=True, exist_ok=True)
# Save landmarks
landmarks_file = output_path / f"{video_name}_pose.json"
with open(landmarks_file, 'w') as f:
json.dump(landmarks_data, f)
# Save stats
stats_file = output_path / f"{video_name}_stats.json"
with open(stats_file, 'w') as f:
json.dump(stats_data, f)
def compute_video_stats(self, landmarks_data: Dict) -> Dict[str, Any]:
"""
Compute statistics from landmarks data.
Args:
landmarks_data: Dictionary containing landmarks for each frame
Returns:
Dictionary containing frame-by-frame stats and maximums
"""
stats = {}
max_counts = {'#face': 0, '#hands': 0, '#pose': 0}
for frame, landmarks in landmarks_data.items():
if landmarks is None:
presence = {'#face': 0, '#hands': 0, '#pose': 0}
else:
presence = {
'#face': len(landmarks.get('face_landmarks', [])) if landmarks.get('face_landmarks') else 0,
'#hands': len(landmarks.get('hand_landmarks', [])) if landmarks.get('hand_landmarks') else 0,
'#pose': len(landmarks.get('pose_landmarks', [])) if landmarks.get('pose_landmarks') else 0
}
stats[frame] = presence
# Update max counts
for key in max_counts:
max_counts[key] = max(max_counts[key], presence[key])
stats['max'] = max_counts
return stats
# Convenience function for backward compatibility and simple usage
def video_holistic(video_input, face_model_path: str, hand_model_path: str,
save_results: bool = False, output_dir: Optional[str] = None,
video_name: Optional[str] = None) -> Dict[int, Any]:
"""
Convenience function to process a video and extract holistic landmarks.
Args:
video_input: Either a path to video file (str) or a decord.VideoReader object
face_model_path: Path to the face detection model
hand_model_path: Path to the hand detection model
save_results: Whether to save results to files
output_dir: Directory to save results
video_name: Name for output files (required if save_results=True and video_input is VideoReader)
Returns:
Dictionary containing landmarks for each frame
"""
detector = HolisticDetector(face_model_path, hand_model_path)
return detector.process_video(video_input, save_results, output_dir, video_name)
# Utility functions for batch processing
def load_file(filename: str):
"""Load a pickled and gzipped file."""
import pickle
import gzip
with gzip.open(filename, "rb") as f:
return pickle.load(f)
def is_string_in_file(file_path: str, target_string: str) -> bool:
"""Check if a string exists in a file."""
try:
with Path(file_path).open("r") as f:
for line in f:
if target_string in line:
return True
return False
except Exception as e:
print(f"Error: {e}")
return False
def main():
"""Main function for command-line usage."""
import argparse
import time
import os
parser = argparse.ArgumentParser()
parser.add_argument('--index', type=int, required=True,
help='index of the sub_list to work with')
parser.add_argument('--batch_size', type=int, required=True,
help='batch size')
parser.add_argument('--pose_path', type=str, required=True,
help='path to where the pose data will be saved')
parser.add_argument('--stats_path', type=str, required=True,
help='path to where the stats data will be saved')
parser.add_argument('--time_limit', type=int, required=True,
help='time limit')
parser.add_argument('--files_list', type=str, required=True,
help='files list')
parser.add_argument('--problem_file_path', type=str, required=True,
help='problem file path')
parser.add_argument('--face_model_path', type=str, required=True,
help='face model path')
parser.add_argument('--hand_model_path', type=str, required=True,
help='hand model path')
args = parser.parse_args()
start_time = time.time()
# Initialize detector
detector = HolisticDetector(args.face_model_path, args.hand_model_path)
# Load the files list
fixed_list = load_file(args.files_list)
# Create folders if they do not exist
Path(args.pose_path).mkdir(parents=True, exist_ok=True)
Path(args.stats_path).mkdir(parents=True, exist_ok=True)
# Create problem file if it doesn't exist
if not os.path.exists(args.problem_file_path):
with open(args.problem_file_path, 'w') as f:
pass
# Process videos in batches
video_batches = [fixed_list[i:i + args.batch_size] for i in range(0, len(fixed_list), args.batch_size)]
for video_file in video_batches[args.index]:
current_time = time.time()
if current_time - start_time > args.time_limit:
print("Time limit reached. Stopping execution.")
break
# Check if output files already exist
video_name = Path(video_file).stem
landmark_json_path = Path(args.pose_path) / f"{video_name}_pose.json"
stats_json_path = Path(args.stats_path) / f"{video_name}_stats.json"
if landmark_json_path.exists() and stats_json_path.exists():
print(f"Skipping {video_file} - output files already exist")
continue
elif is_string_in_file(args.problem_file_path, video_file):
print(f"Skipping {video_file} - found in problem file")
continue
else:
try:
print(f"Processing {video_file}")
result_dict = detector.process_video(
video_file_path=video_file,
save_results=True,
output_dir=args.pose_path
)
# Also save stats separately for compatibility
stats = detector.compute_video_stats(result_dict)
with open(stats_json_path, 'w') as f:
json.dump(stats, f)
print(f"Successfully processed {video_file}")
except Exception as e:
print(f"Error processing {video_file}: {e}")
# Add to problem file
with open(args.problem_file_path, "a") as p:
p.write(video_file + "\n")
if __name__ == "__main__":
main()