TTIC-SHuBERT-ASLVideo-to-EnglishText / shubert_inference.py
ShesterG's picture
Add application file
ceeabec
import torch
import numpy as np
import csv
import os
from tqdm import tqdm
import argparse
from pathlib import Path
from typing import Dict, List, Optional, Tuple, Union, Any
from examples.shubert.models.shubert import SHubertModel, SHubertConfig
from transformers import ByT5Tokenizer, ByT5ForConditionalGeneration
class SHubertProcessor:
"""
A class for processing multi-modal embeddings through SHubert model.
"""
def __init__(self, checkpoint_path: str, device: Optional[str] = None):
"""
Initialize the SHubertProcessor.
Args:
checkpoint_path: Path to the SHubert model checkpoint
device: Device to use ('cuda' or 'cpu'). Auto-detected if None
"""
self.checkpoint_path = checkpoint_path
self.device = device if device else torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load the model
self.model = self._load_model()
print(f"SHubertProcessor initialized on device: {self.device}")
def _load_model(self) -> SHubertModel:
"""Load the SHubert model from checkpoint."""
# Initialize configuration
cfg = SHubertConfig()
# Initialize the model
model = SHubertModel(cfg)
# Load the checkpoint
checkpoint = torch.load(self.checkpoint_path, map_location=self.device)
# Extract state dict
if 'model' in checkpoint:
state_dict = checkpoint['model']
else:
state_dict = checkpoint
# Load the state dictionary into the model
model.load_state_dict(state_dict, strict=False)
model.eval()
model.to(self.device)
return model
def process_embeddings(self, face_embeddings: np.ndarray,
left_hand_embeddings: np.ndarray,
right_hand_embeddings: np.ndarray,
pose_embeddings: np.ndarray) -> np.ndarray:
"""
Process multi-modal embeddings through SHubert model.
Args:
face_embeddings: Face embeddings array of shape (num_frames, embedding_dim)
left_hand_embeddings: Left hand embeddings array of shape (num_frames, embedding_dim)
right_hand_embeddings: Right hand embeddings array of shape (num_frames, embedding_dim)
pose_embeddings: Pose embeddings array of shape (num_frames, pose_dim)
Returns:
Numpy array of SHubert features with shape (num_layers, num_frames, feature_dim)
"""
# Convert to tensors and move to device
face = torch.from_numpy(face_embeddings).float().to(self.device)
left_hand = torch.from_numpy(left_hand_embeddings).float().to(self.device)
right_hand = torch.from_numpy(right_hand_embeddings).float().to(self.device)
body_posture = torch.from_numpy(pose_embeddings).float().to(self.device)
length = face.shape[0]
# Prepare input in the format expected by SHubert
source = [{
"face": face,
"left_hand": left_hand,
"right_hand": right_hand,
"body_posture": body_posture,
# Add dummy labels to match the expected input format
"label_face": torch.zeros((length, 1)).to(self.device),
"label_left_hand": torch.zeros((length, 1)).to(self.device),
"label_right_hand": torch.zeros((length, 1)).to(self.device),
"label_body_posture": torch.zeros((length, 1)).to(self.device)
}]
# Extract features
with torch.no_grad():
result = self.model.extract_features(source, padding_mask=None, kmeans_labels=None, mask=False)
# Extract layer outputs
layer_outputs = []
for layer in result['layer_results']:
# layer_output has shape [T, B, D]
# Since batch size B is 1, we can squeeze it
layer_output = layer[-1]
layer_output = layer_output.squeeze(1) # Shape: [T, D]
layer_outputs.append(layer_output.cpu().numpy()) # Convert to NumPy array
# Stack the outputs from all layers to get an array of shape [L, T, D]
features = np.stack(layer_outputs, axis=0) # Shape: [L, T, D]
return features
def process_embeddings_from_files(self, face_path: str, left_hand_path: str,
right_hand_path: str, pose_path: str) -> np.ndarray:
"""
Process embeddings loaded from files.
Args:
face_path: Path to face embeddings .npy file
left_hand_path: Path to left hand embeddings .npy file
right_hand_path: Path to right hand embeddings .npy file
pose_path: Path to pose embeddings .npy file
Returns:
Numpy array of SHubert features with shape (num_layers, num_frames, feature_dim)
"""
# Load numpy arrays
face_embeddings = np.load(face_path)
left_hand_embeddings = np.load(left_hand_path)
right_hand_embeddings = np.load(right_hand_path)
pose_embeddings = np.load(pose_path)
return self.process_embeddings(face_embeddings, left_hand_embeddings,
right_hand_embeddings, pose_embeddings)
def process_and_save_embeddings(self, face_embeddings: np.ndarray,
left_hand_embeddings: np.ndarray,
right_hand_embeddings: np.ndarray,
pose_embeddings: np.ndarray,
output_path: str) -> str:
"""
Process embeddings and save to file.
Args:
face_embeddings: Face embeddings array
left_hand_embeddings: Left hand embeddings array
right_hand_embeddings: Right hand embeddings array
pose_embeddings: Pose embeddings array
output_path: Path to save the output file
Returns:
Path to the saved file
"""
# Process embeddings
features = self.process_embeddings(face_embeddings, left_hand_embeddings,
right_hand_embeddings, pose_embeddings)
# Create output directory if it doesn't exist
output_dir = Path(output_path).parent
output_dir.mkdir(parents=True, exist_ok=True)
# Save features
np.save(output_path, features)
return str(output_path)
def process_from_files_and_save(self, face_path: str, left_hand_path: str,
right_hand_path: str, pose_path: str,
output_path: str) -> str:
"""
Process embeddings from files and save results.
Args:
face_path: Path to face embeddings .npy file
left_hand_path: Path to left hand embeddings .npy file
right_hand_path: Path to right hand embeddings .npy file
pose_path: Path to pose embeddings .npy file
output_path: Path to save the output file
Returns:
Path to the saved file
"""
# Process embeddings
features = self.process_embeddings_from_files(face_path, left_hand_path,
right_hand_path, pose_path)
# Create output directory if it doesn't exist
output_dir = Path(output_path).parent
output_dir.mkdir(parents=True, exist_ok=True)
# Save features
np.save(output_path, features)
return str(output_path)
class SHuBERTTextGenerator:
"""
A class that combines SHuBERT feature extraction with BYT5 text generation.
"""
def __init__(self, shubert_checkpoint: str, byt5_model_name: str = "google/byt5-base",
device: Optional[str] = None):
"""
Initialize with SHuBERT and BYT5 models.
Args:
shubert_checkpoint: Path to SHuBERT model checkpoint
byt5_model_name: Name of BYT5 model (default: "google/byt5-base")
device: Device to use ('cuda' or 'cpu')
"""
self.device = device if device else torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Initialize SHuBERT processor
self.shubert_processor = SHubertProcessor(shubert_checkpoint, self.device)
# Initialize BYT5 model
self.tokenizer = ByT5Tokenizer.from_pretrained(byt5_model_name)
self.model = ByT5ForConditionalGeneration.from_pretrained(byt5_model_name).to(self.device)
def generate_text(self, face_embeddings: np.ndarray,
left_hand_embeddings: np.ndarray,
right_hand_embeddings: np.ndarray,
pose_embeddings: np.ndarray,
max_length: int = 1024,
num_beams: int = 5) -> str:
"""
Generate text from multi-modal embeddings.
Args:
face_embeddings: Face embeddings array
left_hand_embeddings: Left hand embeddings array
right_hand_embeddings: Right hand embeddings array
pose_embeddings: Pose embeddings array
max_length: Maximum length of generated text
num_beams: Number of beams for beam search
Returns:
Generated text string
"""
# Get SHuBERT features
features = self.shubert_processor.process_embeddings(
face_embeddings, left_hand_embeddings, right_hand_embeddings, pose_embeddings)
# Select features from specific layer (default: last layer)
features = features[-1] # Shape: [T, D]
# Convert to tensor and add batch dimension
features = torch.from_numpy(features).float().unsqueeze(0).to(self.device)
# Generate text
generated_ids = self.model.generate(
inputs_embeds=features,
max_length=max_length,
num_beams=num_beams,
early_stopping=True
)
# Decode generated tokens to text
return self.tokenizer.decode(generated_ids[0], skip_special_tokens=True)
def generate_text_from_features(face_embeddings: np.ndarray,
left_hand_embeddings: np.ndarray,
right_hand_embeddings: np.ndarray,
pose_embeddings: np.ndarray,
shubert_checkpoint: str,
byt5_model_name: str = "google/byt5-base",
max_length: int = 1024,
num_beams: int = 5) -> str:
"""
Convenience function to generate text from features.
"""
generator = SHuBERTTextGenerator(shubert_checkpoint, byt5_model_name)
return generator.generate_text(
face_embeddings, left_hand_embeddings, right_hand_embeddings, pose_embeddings,
max_length=max_length, num_beams=num_beams
)
# Convenience functions for backward compatibility
def process_shubert_embeddings(face_embeddings: np.ndarray,
left_hand_embeddings: np.ndarray,
right_hand_embeddings: np.ndarray,
pose_embeddings: np.ndarray,
checkpoint_path: str) -> np.ndarray:
"""
Convenience function to process embeddings through SHubert.
Args:
face_embeddings: Face embeddings array
left_hand_embeddings: Left hand embeddings array
right_hand_embeddings: Right hand embeddings array
pose_embeddings: Pose embeddings array
checkpoint_path: Path to the SHubert model checkpoint
Returns:
Numpy array of SHubert features
"""
processor = SHubertProcessor(checkpoint_path)
return processor.process_embeddings(face_embeddings, left_hand_embeddings,
right_hand_embeddings, pose_embeddings)
def process_sample(model: SHubertModel, face_path: str, left_hand_path: str,
right_hand_path: str, body_posture_path: str) -> np.ndarray:
"""
Original function for backward compatibility with command-line usage.
"""
# Load numpy arrays
face_np = np.load(face_path)
left_hand_np = np.load(left_hand_path)
right_hand_np = np.load(right_hand_path)
body_posture_np = np.load(body_posture_path)
face = torch.from_numpy(face_np).float().cuda()
left_hand = torch.from_numpy(left_hand_np).float().cuda()
right_hand = torch.from_numpy(right_hand_np).float().cuda()
body_posture = torch.from_numpy(body_posture_np).float().cuda()
length = face.shape[0]
# Prepare input
source = [{
"face": face,
"left_hand": left_hand,
"right_hand": right_hand,
"body_posture": body_posture,
# Add dummy labels to match the expected input format
"label_face": torch.zeros((length, 1)).cuda(),
"label_left_hand": torch.zeros((length, 1)).cuda(),
"label_right_hand": torch.zeros((length, 1)).cuda(),
"label_body_posture": torch.zeros((length, 1)).cuda()
}]
# Extract features
with torch.no_grad():
result = model.extract_features(source, padding_mask=None, kmeans_labels=None, mask=False)
# Extract layer outputs
layer_outputs = []
for layer in result['layer_results']:
# layer_output has shape [T, B, D]
# Since batch size B is 1, we can squeeze it
layer_output = layer[-1]
layer_output = layer_output.squeeze(1) # Shape: [T, D]
layer_outputs.append(layer_output.cpu().numpy()) # Convert to NumPy array
# Stack the outputs from all layers to get an array of shape [L, T, D]
features = np.stack(layer_outputs, axis=0) # Shape: [L, T, D]
return features
def load_model(checkpoint_path: str) -> SHubertModel:
"""
Original function for backward compatibility with command-line usage.
"""
cfg = SHubertConfig()
# Initialize the model
model = SHubertModel(cfg)
# Load the checkpoint
checkpoint = torch.load(checkpoint_path)
# If the checkpoint is saved with a 'model' key
if 'model' in checkpoint:
state_dict = checkpoint['model']
else:
state_dict = checkpoint
# Load the state dictionary into the model
model.load_state_dict(state_dict, strict=False)
model.eval()
model.cuda() # Move to GPU if available
return model
def main(csv_list: List[List[str]], checkpoint_path: str, output_dir: str, index: int):
"""
Original main function for backward compatibility with command-line usage.
"""
model = load_model(checkpoint_path)
os.makedirs(output_dir, exist_ok=True)
for row in csv_list:
cues_list = row[0].split('\t')
face_path, left_hand_path, right_hand_path, body_posture_path = cues_list[0], cues_list[1], cues_list[2], cues_list[3]
output_filename = f"{os.path.basename(face_path).rsplit('.', 1)[0].rsplit('_', 1)[0]}.npy"
output_path = os.path.join(output_dir, output_filename)
# check if the output file already exists
if os.path.exists(output_path):
print(f"Skipping {output_path} as it already exists")
continue
# Process the sample
features = process_sample(model, face_path, left_hand_path, right_hand_path, body_posture_path)
np.save(output_path, features)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--index', type=int, required=True,
help='index of the sub_list to work with')
parser.add_argument('--csv_path', type=str, required=True,
help='path to the CSV file')
parser.add_argument('--checkpoint_path', type=str, required=True,
help='path to the checkpoint file')
parser.add_argument('--output_dir', type=str, required=True,
help='directory to save output files')
parser.add_argument('--batch_size', type=int, required=True,
help='batch size for processing')
args = parser.parse_args()
index = args.index
csv_path = args.csv_path
checkpoint_path = args.checkpoint_path
output_dir = args.output_dir
batch_size = int(args.batch_size)
# make output dir
os.makedirs(output_dir, exist_ok=True)
# Load CSV data
fixed_list = []
with open(csv_path, 'r') as csvfile:
reader = csv.reader(csvfile)
for row in reader:
fixed_list.append(row)
# Process in batches
video_batches = [fixed_list[i:i + batch_size] for i in range(0, len(fixed_list), batch_size)]
csv_list = video_batches[index]
main(csv_list, checkpoint_path, output_dir, index)