ai-text-humanizer / humanizer_batch.py
SidddhantJain
Grason app was built for ai detection and humanizer
850a7ff
import gradio as gr
import pandas as pd
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import torch
import random
import re
import warnings
warnings.filterwarnings("ignore")
class BatchHumanizer:
def __init__(self):
try:
self.model_name = "Vamsi/T5_Paraphrase_Paws"
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name, use_fast=False)
self.model = AutoModelForSeq2SeqLM.from_pretrained(self.model_name)
print("βœ… Batch Humanizer model loaded successfully")
except Exception as e:
print(f"❌ Error loading model: {e}")
self.tokenizer = None
self.model = None
def humanize_single_text(self, text, strength="medium"):
"""Humanize a single piece of text"""
if not self.model or not self.tokenizer:
return self.fallback_humanize(text)
try:
# Paraphrase using T5
input_text = f"paraphrase: {text}"
input_ids = self.tokenizer.encode(
input_text,
return_tensors="pt",
max_length=512,
truncation=True
)
# Adjust parameters based on strength
if strength == "light":
temp, top_p = 1.1, 0.9
elif strength == "heavy":
temp, top_p = 1.5, 0.95
else: # medium
temp, top_p = 1.3, 0.92
with torch.no_grad():
outputs = self.model.generate(
input_ids=input_ids,
max_length=min(len(text.split()) + 50, 512),
num_beams=5,
temperature=temp,
top_p=top_p,
do_sample=True,
early_stopping=True,
repetition_penalty=1.2
)
result = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
# Additional humanization
if strength in ["medium", "heavy"]:
result = self.add_natural_variations(result)
return self.clean_text(result) if result and len(result) > 10 else text
except Exception as e:
print(f"Error humanizing text: {e}")
return self.fallback_humanize(text)
def fallback_humanize(self, text):
"""Simple fallback humanization without model"""
# Basic word replacements
replacements = {
"utilize": "use", "demonstrate": "show", "facilitate": "help",
"optimize": "improve", "implement": "apply", "generate": "create",
"therefore": "thus", "however": "yet", "furthermore": "also"
}
result = text
for old, new in replacements.items():
result = re.sub(r'\b' + old + r'\b', new, result, flags=re.IGNORECASE)
return result
def add_natural_variations(self, text):
"""Add natural language variations"""
# Academic connectors
connectors = [
"Moreover", "Furthermore", "Additionally", "In contrast",
"Similarly", "Consequently", "Nevertheless", "Notably"
]
sentences = text.split('.')
varied = []
for i, sentence in enumerate(sentences):
sentence = sentence.strip()
if not sentence:
continue
# Sometimes add connectors
if i > 0 and random.random() < 0.2:
connector = random.choice(connectors)
sentence = f"{connector}, {sentence.lower()}"
varied.append(sentence)
return '. '.join(varied) + '.' if varied else text
def clean_text(self, text):
"""Clean and format text"""
# Remove extra spaces
text = re.sub(r'\s+', ' ', text)
text = re.sub(r'\s+([.!?,:;])', r'\1', text)
# Capitalize sentences
sentences = text.split('. ')
formatted = []
for sentence in sentences:
sentence = sentence.strip()
if sentence:
sentence = sentence[0].upper() + sentence[1:] if len(sentence) > 1 else sentence.upper()
formatted.append(sentence)
result = '. '.join(formatted)
if not result.endswith(('.', '!', '?')):
result += '.'
return result
# Initialize humanizer
batch_humanizer = BatchHumanizer()
def process_text_input(text_input, strength):
"""Process single text input"""
if not text_input or not text_input.strip():
return "Please enter some text to humanize."
return batch_humanizer.humanize_single_text(text_input, strength.lower())
def process_file_upload(file, strength):
"""Process uploaded file"""
if file is None:
return "Please upload a file.", None
try:
# Read the file
if file.name.endswith('.txt'):
with open(file.name, 'r', encoding='utf-8') as f:
content = f.read()
# Split into paragraphs or sentences for processing
paragraphs = [p.strip() for p in content.split('\n\n') if p.strip()]
humanized_paragraphs = []
for para in paragraphs:
if len(para) > 50: # Only process substantial paragraphs
humanized = batch_humanizer.humanize_single_text(para, strength.lower())
humanized_paragraphs.append(humanized)
else:
humanized_paragraphs.append(para)
result = '\n\n'.join(humanized_paragraphs)
# Save to new file
output_filename = file.name.replace('.txt', '_humanized.txt')
with open(output_filename, 'w', encoding='utf-8') as f:
f.write(result)
return result, output_filename
elif file.name.endswith('.csv'):
df = pd.read_csv(file.name)
# Assume the text column is named 'text' or the first column
text_column = 'text' if 'text' in df.columns else df.columns[0]
# Humanize each text entry
df['humanized'] = df[text_column].apply(
lambda x: batch_humanizer.humanize_single_text(str(x), strength.lower()) if pd.notna(x) else x
)
# Save to new CSV
output_filename = file.name.replace('.csv', '_humanized.csv')
df.to_csv(output_filename, index=False)
return f"Processed {len(df)} entries. Check the 'humanized' column.", output_filename
else:
return "Unsupported file format. Please upload .txt or .csv files.", None
except Exception as e:
return f"Error processing file: {str(e)}", None
# Create Gradio interface with tabs
with gr.Blocks(theme="soft", title="AI Text Humanizer Pro") as demo:
gr.Markdown("""
# πŸ€–βž‘οΈπŸ‘¨ AI Text Humanizer Pro
**Advanced tool to transform robotic AI-generated text into natural, human-like writing**
Perfect for:
- πŸ“ Academic papers and essays
- πŸ“Š Research reports
- πŸ“„ Business documents
- πŸ’Ό Professional content
- πŸ” Bypassing AI detection tools
""")
with gr.Tabs():
# Single Text Tab
with gr.TabItem("Single Text"):
gr.Markdown("### Humanize Individual Text")
with gr.Row():
with gr.Column(scale=2):
text_input = gr.Textbox(
lines=12,
placeholder="Paste your AI-generated text here...",
label="Input Text",
info="Enter the text you want to humanize"
)
strength_single = gr.Radio(
choices=["Light", "Medium", "Heavy"],
value="Medium",
label="Humanization Strength"
)
process_btn = gr.Button("πŸš€ Humanize Text", variant="primary")
with gr.Column(scale=2):
text_output = gr.Textbox(
lines=12,
label="Humanized Output",
show_copy_button=True
)
# Examples
gr.Examples(
examples=[
["The implementation of artificial intelligence algorithms demonstrates significant improvements in computational efficiency and accuracy metrics across various benchmark datasets.", "Medium"],
["Machine learning models exhibit superior performance characteristics when evaluated against traditional statistical approaches in predictive analytics applications.", "Heavy"],
["The research methodology utilized in this study involves comprehensive data collection and analysis procedures to ensure robust and reliable results.", "Light"]
],
inputs=[text_input, strength_single],
outputs=text_output,
fn=process_text_input
)
# Batch Processing Tab
with gr.TabItem("Batch Processing"):
gr.Markdown("### Process Files in Batch")
gr.Markdown("Upload .txt or .csv files to humanize multiple texts at once")
with gr.Row():
with gr.Column():
file_input = gr.File(
label="Upload File (.txt or .csv)",
file_types=[".txt", ".csv"]
)
strength_batch = gr.Radio(
choices=["Light", "Medium", "Heavy"],
value="Medium",
label="Humanization Strength"
)
process_file_btn = gr.Button("πŸ”„ Process File", variant="primary")
with gr.Column():
file_output = gr.Textbox(
lines=10,
label="Processing Results",
show_copy_button=True
)
download_file = gr.File(
label="Download Processed File",
visible=False
)
# Settings Tab
with gr.TabItem("Settings & Info"):
gr.Markdown("""
### How it works:
1. **Light Humanization**: Basic paraphrasing with minimal changes
2. **Medium Humanization**: Paraphrasing + vocabulary variations
3. **Heavy Humanization**: All techniques + sentence structure changes
### Features:
- βœ… Advanced T5-based paraphrasing
- βœ… Natural vocabulary diversification
- βœ… Sentence structure optimization
- βœ… Academic tone preservation
- βœ… Batch file processing
- βœ… Multiple output formats
### Supported Formats:
- **Text files (.txt)**: Processes paragraph by paragraph
- **CSV files (.csv)**: Adds 'humanized' column with processed text
### Tips for best results:
- Use complete sentences and paragraphs
- Avoid very short fragments
- Choose appropriate humanization strength
- Review output for context accuracy
""")
# Event handlers
process_btn.click(
fn=process_text_input,
inputs=[text_input, strength_single],
outputs=text_output
)
process_file_btn.click(
fn=process_file_upload,
inputs=[file_input, strength_batch],
outputs=[file_output, download_file]
)
if __name__ == "__main__":
demo.launch(
share=False,
server_name="0.0.0.0",
server_port=7862,
debug=True
)