Spaces:
Sleeping
Sleeping
import streamlit as st | |
import os | |
import time | |
from utils import fetch_news, analyze_sentiment, extract_topics, generate_tts | |
import plotly.express as px | |
import warnings | |
warnings.filterwarnings("ignore", category=UserWarning) | |
# Add custom CSS | |
st.markdown(""" | |
<style> | |
h1, .stTitle {color: #2E86C1; font-size: 2.5em; font-weight: bold;} | |
h2, .stSubheader {color: #1A5276; font-weight: bold;} | |
.stButton>button {background-color: #3498DB; color: white; border-radius: 5px; padding: 0.5em 1em;} | |
.stButton>button:hover {background-color: #2E86C1;} | |
.sentiment-positive {color: green; font-weight: bold;} | |
.sentiment-negative {color: red; font-weight: bold;} | |
.sentiment-neutral {color: gray; font-weight: bold;} | |
.sidebar .sidebar-content {position: sticky; top: 50%; padding: 10px;} | |
</style> | |
""", unsafe_allow_html=True) | |
st.title("News Summarizer and Sentiment Analyzer") | |
company_name = st.text_input("Enter a company name to get a sentiment report of its recent news.", placeholder="e.g., Google, Meta", value="") | |
if st.button("Analyze"): | |
with st.spinner("Fetching and analyzing news articles..."): | |
time.sleep(1) | |
articles_data = fetch_news(company_name) | |
if not articles_data: | |
st.error(f"No articles found for {company_name}. Check logs for details.") | |
else: | |
articles = [] | |
sentiments = {"Positive": 0, "Negative": 0, "Neutral": 0} | |
positive_articles = [] | |
negative_articles = [] | |
neutral_articles = [] | |
for article in articles_data: | |
summary = article["summary"].strip() or article["title"].split(" - ")[0].strip() | |
source = article["title"].split(" - ")[-1].strip() if " - " in article["title"] else "" | |
if source in summary: | |
summary = summary.replace(source, "").strip() | |
summary = f"{summary.rstrip(' -')} - {source}" | |
sentiment = analyze_sentiment(summary) | |
topics = extract_topics(summary) | |
sentiments[sentiment] += 1 | |
title = article["title"].split(" - ")[0].strip() | |
if sentiment == "Positive": | |
positive_articles.append(title) | |
elif sentiment == "Negative": | |
negative_articles.append(title) | |
else: | |
neutral_articles.append(title) | |
articles.append({ | |
"Title": article["title"], | |
"Summary": summary, | |
"Sentiment": sentiment, | |
"Topics": topics, | |
"Link": article["link"], | |
"PubDate": article["pub_date"] | |
}) | |
import random | |
detailed_comparisons = [f"- News {i + 1} {article['Sentiment'].lower()}ly discusses {', '.join(article['Topics'])}" | |
for i, article in enumerate(articles)] | |
dominant_sentiment = max(sentiments, key=sentiments.get) | |
trends = f"{company_name} News Trends: {dominant_sentiment}" | |
total_articles = sum(sentiments.values()) | |
sentiment_count = f"{sentiments['Positive']} positive, {sentiments['Negative']} negative, {sentiments['Neutral']} neutral" | |
intro_phrases = [ | |
f"Spanning {total_articles} recent reports, the narrative surrounding {company_name} tilts {dominant_sentiment.lower()}, with {sentiment_count}.", | |
f"Across {total_articles} articles in recent coverage, {company_name}’s story emerges as predominantly {dominant_sentiment.lower()}, reflecting {sentiment_count}.", | |
f"Drawing from {total_articles} latest publications, {company_name}’s news landscape leans {dominant_sentiment.lower()}, underscored by {sentiment_count}." | |
] | |
positive_phrases = [ | |
f"With {len(positive_articles)} favorable accounts, {company_name} demonstrates notable progress, exemplified by '{random.choice(positive_articles) if positive_articles else 'no specific examples available'}'.", | |
f"Boasting {len(positive_articles)} positive developments, {company_name} showcases strength, as evidenced in '{random.choice(positive_articles) if positive_articles else 'no notable instances'}'.", | |
f"Highlighted by {len(positive_articles)} encouraging reports, {company_name} is forging ahead, with '{random.choice(positive_articles) if positive_articles else 'no standout reports'}' standing out." | |
] | |
negative_phrases = [ | |
f"However, {len(negative_articles)} troubling narratives raise concerns, including '{random.choice(negative_articles) if negative_articles else 'no specific concerns noted'}'.", | |
f"Yet, {len(negative_articles)} adverse reports signal challenges, such as '{random.choice(negative_articles) if negative_articles else 'no highlighted issues'}'.", | |
f"Nevertheless, {len(negative_articles)} concerning stories cast a shadow, notably '{random.choice(negative_articles) if negative_articles else 'no notable setbacks'}'." | |
] | |
neutral_phrases = [ | |
f"Additionally, {len(neutral_articles)} impartial updates provide context, such as '{random.choice(neutral_articles) if neutral_articles else 'no neutral updates available'}'.", | |
f"Meanwhile, {len(neutral_articles)} balanced accounts offer insight, including '{random.choice(neutral_articles) if neutral_articles else 'no balanced reports'}'.", | |
f"Furthermore, {len(neutral_articles)} objective pieces contribute details, like '{random.choice(neutral_articles) if neutral_articles else 'no objective details'}'." | |
] | |
outlook_phrases_positive = [ | |
f"In summary, {company_name} appears poised for a favorable trajectory.", | |
f"All told, {company_name} stands on the cusp of a promising future.", | |
f"Ultimately, {company_name} is positioned for an optimistic course ahead." | |
] | |
outlook_phrases_negative = [ | |
f"In conclusion, {company_name} confronts a challenging path forward.", | |
f"Overall, {company_name} navigates a formidable road ahead.", | |
f"To conclude, {company_name} faces a demanding horizon." | |
] | |
outlook_phrases_mixed = [ | |
f"In the final analysis, {company_name} balances opportunity and uncertainty.", | |
f"On balance, {company_name} presents a complex outlook moving forward.", | |
f"Ultimately, {company_name} reflects a blend of prospects and hurdles." | |
] | |
final_text = random.choice(intro_phrases) + " " | |
if positive_articles: | |
final_text += random.choice(positive_phrases) + " " | |
if negative_articles: | |
final_text += random.choice(negative_phrases) + " " | |
if neutral_articles: | |
final_text += random.choice(neutral_phrases) + " " | |
if sentiments["Positive"] > sentiments["Negative"]: | |
final_text += random.choice(outlook_phrases_positive) | |
elif sentiments["Negative"] > sentiments["Positive"]: | |
final_text += random.choice(outlook_phrases_negative) | |
else: | |
final_text += random.choice(outlook_phrases_mixed) | |
st.session_state.result = { | |
"Company": company_name, | |
"Articles": articles, | |
"Comparative Sentiment Score": { | |
"Sentiment Distribution": f"Positive: {sentiments['Positive']}, Negative: {sentiments['Negative']}, Neutral: {sentiments['Neutral']}", | |
"Trends": trends, | |
"Detailed Comparisons": "\n".join(detailed_comparisons) | |
}, | |
"Final Sentiment Analysis": final_text.strip() | |
} | |
if "result" in st.session_state: | |
result = st.session_state.result | |
if "error" in result: | |
st.error(result["error"]) | |
else: | |
dist = result['Comparative Sentiment Score']['Sentiment Distribution'] | |
sentiment_counts = { | |
"Positive": int(dist.split("Positive: ")[1].split(",")[0]), | |
"Negative": int(dist.split("Negative: ")[1].split(",")[0]), | |
"Neutral": int(dist.split("Neutral: ")[1]) | |
} | |
fig = px.pie( | |
values=list(sentiment_counts.values()), | |
names=list(sentiment_counts.keys()), | |
title="Sentiment Distribution", | |
color_discrete_map={"Positive": "green", "Negative": "red", "Neutral": "gray"}, | |
width=300, | |
height=300 | |
) | |
fig.update_layout(margin=dict(t=40, b=0, l=0, r=0)) | |
st.sidebar.plotly_chart(fig, use_container_width=True) | |
st.subheader(f"Analysis for {result['Company']}") | |
for i, article in enumerate(result["Articles"], 1): | |
st.write(f"**News {i}:** {article['PubDate']} [Read full article]({article['Link']})") | |
st.write(f"Summary: {article['Summary']}") | |
sentiment_class = f"sentiment-{article['Sentiment'].lower()}" | |
st.markdown(f"Sentiment: <span class='{sentiment_class}'>{article['Sentiment']}</span>", unsafe_allow_html=True) | |
st.write("") | |
st.subheader("Comparative Sentiment Analysis") | |
st.write("Detailed Comparisons:") | |
st.write(f"Sentiment Distribution: {result['Comparative Sentiment Score']['Sentiment Distribution']}") | |
st.markdown(f"**{result['Comparative Sentiment Score']['Trends']}**", unsafe_allow_html=True) | |
st.markdown(result["Comparative Sentiment Score"]["Detailed Comparisons"], unsafe_allow_html=True) | |
st.subheader("Final Sentiment Analysis") | |
st.write(result["Final Sentiment Analysis"]) | |
language = st.selectbox("Select Audio Language", ["Hindi", "English"]) | |
if st.button("Generate News Audio"): | |
with st.spinner("Generating audio..."): | |
audio_buffer = generate_tts(result["Final Sentiment Analysis"], 'hi' if language == "Hindi" else 'en') | |
if audio_buffer: | |
st.audio(audio_buffer, format="audio/mp3") | |
else: | |
st.error("Failed to generate audio. Check terminal logs.") | |
st.markdown(""" | |
<p style="font-size: small; color: grey; text-align: center;"> | |
Developed By: Krishna Prakash | |
<a href="https://www.linkedin.com/in/krishnaprakash-profile/" target="_blank"> | |
<img src="https://img.icons8.com/ios-filled/30/0077b5/linkedin.png" alt="LinkedIn" style="vertical-align: middle; margin: 0 5px;"/> | |
</a> | |
</p> | |
""", unsafe_allow_html=True) |