Assignment5-7 / app.py
Sirapatrwan's picture
Upload app.py
8bf526a verified
import streamlit as st
import os
import time
from utils import fetch_news, analyze_sentiment, extract_topics, generate_tts
import plotly.express as px
import warnings
warnings.filterwarnings("ignore", category=UserWarning)
# Add custom CSS
st.markdown("""
<style>
h1, .stTitle {color: #2E86C1; font-size: 2.5em; font-weight: bold;}
h2, .stSubheader {color: #1A5276; font-weight: bold;}
.stButton>button {background-color: #3498DB; color: white; border-radius: 5px; padding: 0.5em 1em;}
.stButton>button:hover {background-color: #2E86C1;}
.sentiment-positive {color: green; font-weight: bold;}
.sentiment-negative {color: red; font-weight: bold;}
.sentiment-neutral {color: gray; font-weight: bold;}
.sidebar .sidebar-content {position: sticky; top: 50%; padding: 10px;}
</style>
""", unsafe_allow_html=True)
st.title("News Summarizer and Sentiment Analyzer")
company_name = st.text_input("Enter a company name to get a sentiment report of its recent news.", placeholder="e.g., Google, Meta", value="")
if st.button("Analyze"):
with st.spinner("Fetching and analyzing news articles..."):
time.sleep(1)
articles_data = fetch_news(company_name)
if not articles_data:
st.error(f"No articles found for {company_name}. Check logs for details.")
else:
articles = []
sentiments = {"Positive": 0, "Negative": 0, "Neutral": 0}
positive_articles = []
negative_articles = []
neutral_articles = []
for article in articles_data:
summary = article["summary"].strip() or article["title"].split(" - ")[0].strip()
source = article["title"].split(" - ")[-1].strip() if " - " in article["title"] else ""
if source in summary:
summary = summary.replace(source, "").strip()
summary = f"{summary.rstrip(' -')} - {source}"
sentiment = analyze_sentiment(summary)
topics = extract_topics(summary)
sentiments[sentiment] += 1
title = article["title"].split(" - ")[0].strip()
if sentiment == "Positive":
positive_articles.append(title)
elif sentiment == "Negative":
negative_articles.append(title)
else:
neutral_articles.append(title)
articles.append({
"Title": article["title"],
"Summary": summary,
"Sentiment": sentiment,
"Topics": topics,
"Link": article["link"],
"PubDate": article["pub_date"]
})
import random
detailed_comparisons = [f"- News {i + 1} {article['Sentiment'].lower()}ly discusses {', '.join(article['Topics'])}"
for i, article in enumerate(articles)]
dominant_sentiment = max(sentiments, key=sentiments.get)
trends = f"{company_name} News Trends: {dominant_sentiment}"
total_articles = sum(sentiments.values())
sentiment_count = f"{sentiments['Positive']} positive, {sentiments['Negative']} negative, {sentiments['Neutral']} neutral"
intro_phrases = [
f"Spanning {total_articles} recent reports, the narrative surrounding {company_name} tilts {dominant_sentiment.lower()}, with {sentiment_count}.",
f"Across {total_articles} articles in recent coverage, {company_name}’s story emerges as predominantly {dominant_sentiment.lower()}, reflecting {sentiment_count}.",
f"Drawing from {total_articles} latest publications, {company_name}’s news landscape leans {dominant_sentiment.lower()}, underscored by {sentiment_count}."
]
positive_phrases = [
f"With {len(positive_articles)} favorable accounts, {company_name} demonstrates notable progress, exemplified by '{random.choice(positive_articles) if positive_articles else 'no specific examples available'}'.",
f"Boasting {len(positive_articles)} positive developments, {company_name} showcases strength, as evidenced in '{random.choice(positive_articles) if positive_articles else 'no notable instances'}'.",
f"Highlighted by {len(positive_articles)} encouraging reports, {company_name} is forging ahead, with '{random.choice(positive_articles) if positive_articles else 'no standout reports'}' standing out."
]
negative_phrases = [
f"However, {len(negative_articles)} troubling narratives raise concerns, including '{random.choice(negative_articles) if negative_articles else 'no specific concerns noted'}'.",
f"Yet, {len(negative_articles)} adverse reports signal challenges, such as '{random.choice(negative_articles) if negative_articles else 'no highlighted issues'}'.",
f"Nevertheless, {len(negative_articles)} concerning stories cast a shadow, notably '{random.choice(negative_articles) if negative_articles else 'no notable setbacks'}'."
]
neutral_phrases = [
f"Additionally, {len(neutral_articles)} impartial updates provide context, such as '{random.choice(neutral_articles) if neutral_articles else 'no neutral updates available'}'.",
f"Meanwhile, {len(neutral_articles)} balanced accounts offer insight, including '{random.choice(neutral_articles) if neutral_articles else 'no balanced reports'}'.",
f"Furthermore, {len(neutral_articles)} objective pieces contribute details, like '{random.choice(neutral_articles) if neutral_articles else 'no objective details'}'."
]
outlook_phrases_positive = [
f"In summary, {company_name} appears poised for a favorable trajectory.",
f"All told, {company_name} stands on the cusp of a promising future.",
f"Ultimately, {company_name} is positioned for an optimistic course ahead."
]
outlook_phrases_negative = [
f"In conclusion, {company_name} confronts a challenging path forward.",
f"Overall, {company_name} navigates a formidable road ahead.",
f"To conclude, {company_name} faces a demanding horizon."
]
outlook_phrases_mixed = [
f"In the final analysis, {company_name} balances opportunity and uncertainty.",
f"On balance, {company_name} presents a complex outlook moving forward.",
f"Ultimately, {company_name} reflects a blend of prospects and hurdles."
]
final_text = random.choice(intro_phrases) + " "
if positive_articles:
final_text += random.choice(positive_phrases) + " "
if negative_articles:
final_text += random.choice(negative_phrases) + " "
if neutral_articles:
final_text += random.choice(neutral_phrases) + " "
if sentiments["Positive"] > sentiments["Negative"]:
final_text += random.choice(outlook_phrases_positive)
elif sentiments["Negative"] > sentiments["Positive"]:
final_text += random.choice(outlook_phrases_negative)
else:
final_text += random.choice(outlook_phrases_mixed)
st.session_state.result = {
"Company": company_name,
"Articles": articles,
"Comparative Sentiment Score": {
"Sentiment Distribution": f"Positive: {sentiments['Positive']}, Negative: {sentiments['Negative']}, Neutral: {sentiments['Neutral']}",
"Trends": trends,
"Detailed Comparisons": "\n".join(detailed_comparisons)
},
"Final Sentiment Analysis": final_text.strip()
}
if "result" in st.session_state:
result = st.session_state.result
if "error" in result:
st.error(result["error"])
else:
dist = result['Comparative Sentiment Score']['Sentiment Distribution']
sentiment_counts = {
"Positive": int(dist.split("Positive: ")[1].split(",")[0]),
"Negative": int(dist.split("Negative: ")[1].split(",")[0]),
"Neutral": int(dist.split("Neutral: ")[1])
}
fig = px.pie(
values=list(sentiment_counts.values()),
names=list(sentiment_counts.keys()),
title="Sentiment Distribution",
color_discrete_map={"Positive": "green", "Negative": "red", "Neutral": "gray"},
width=300,
height=300
)
fig.update_layout(margin=dict(t=40, b=0, l=0, r=0))
st.sidebar.plotly_chart(fig, use_container_width=True)
st.subheader(f"Analysis for {result['Company']}")
for i, article in enumerate(result["Articles"], 1):
st.write(f"**News {i}:** {article['PubDate']} [Read full article]({article['Link']})")
st.write(f"Summary: {article['Summary']}")
sentiment_class = f"sentiment-{article['Sentiment'].lower()}"
st.markdown(f"Sentiment: <span class='{sentiment_class}'>{article['Sentiment']}</span>", unsafe_allow_html=True)
st.write("")
st.subheader("Comparative Sentiment Analysis")
st.write("Detailed Comparisons:")
st.write(f"Sentiment Distribution: {result['Comparative Sentiment Score']['Sentiment Distribution']}")
st.markdown(f"**{result['Comparative Sentiment Score']['Trends']}**", unsafe_allow_html=True)
st.markdown(result["Comparative Sentiment Score"]["Detailed Comparisons"], unsafe_allow_html=True)
st.subheader("Final Sentiment Analysis")
st.write(result["Final Sentiment Analysis"])
language = st.selectbox("Select Audio Language", ["Hindi", "English"])
if st.button("Generate News Audio"):
with st.spinner("Generating audio..."):
audio_buffer = generate_tts(result["Final Sentiment Analysis"], 'hi' if language == "Hindi" else 'en')
if audio_buffer:
st.audio(audio_buffer, format="audio/mp3")
else:
st.error("Failed to generate audio. Check terminal logs.")
st.markdown("""
<p style="font-size: small; color: grey; text-align: center;">
Developed By: Krishna Prakash
<a href="https://www.linkedin.com/in/krishnaprakash-profile/" target="_blank">
<img src="https://img.icons8.com/ios-filled/30/0077b5/linkedin.png" alt="LinkedIn" style="vertical-align: middle; margin: 0 5px;"/>
</a>
</p>
""", unsafe_allow_html=True)