VibeVoice-Large / app.py
Steveeeeeeen's picture
Steveeeeeeen HF Staff
Update app.py (#1)
93ece79 verified
import os
import time
import numpy as np
import gradio as gr
import librosa
import soundfile as sf
import torch
import traceback
import threading
from spaces import GPU
from datetime import datetime
from vibevoice.modular.modeling_vibevoice_inference import VibeVoiceForConditionalGenerationInference
from vibevoice.processor.vibevoice_processor import VibeVoiceProcessor
from vibevoice.modular.streamer import AudioStreamer
from transformers.utils import logging
from transformers import set_seed
logging.set_verbosity_info()
logger = logging.get_logger(__name__)
class VibeVoiceDemo:
def __init__(self, model_path: str, device: str = "cuda", inference_steps: int = 5):
self.model_path = model_path
self.device = device
self.inference_steps = inference_steps
self.is_generating = False
self.processor = None
self.model = None
self.available_voices = {}
self.load_model()
self.setup_voice_presets()
self.load_example_scripts()
def load_model(self):
print(f"Loading processor & model from {self.model_path}")
self.processor = VibeVoiceProcessor.from_pretrained(self.model_path)
self.model = VibeVoiceForConditionalGenerationInference.from_pretrained(
self.model_path,
torch_dtype=torch.bfloat16
)
# self.model.eval()
# self.model.set_ddpm_inference_steps(num_steps=self.inference_steps)
def setup_voice_presets(self):
voices_dir = os.path.join(os.path.dirname(__file__), "voices")
if not os.path.exists(voices_dir):
print(f"Warning: Voices directory not found at {voices_dir}")
return
wav_files = [f for f in os.listdir(voices_dir)
if f.lower().endswith(('.wav', '.mp3', '.flac', '.ogg', '.m4a', '.aac'))]
for wav_file in wav_files:
name = os.path.splitext(wav_file)[0]
self.available_voices[name] = os.path.join(voices_dir, wav_file)
print(f"Voices loaded: {list(self.available_voices.keys())}")
def read_audio(self, audio_path: str, target_sr: int = 24000) -> np.ndarray:
try:
wav, sr = sf.read(audio_path)
if len(wav.shape) > 1:
wav = np.mean(wav, axis=1)
if sr != target_sr:
wav = librosa.resample(wav, orig_sr=sr, target_sr=target_sr)
return wav
except Exception as e:
print(f"Error reading audio {audio_path}: {e}")
return np.array([])
@GPU(duration=180)
def generate_podcast(self,
num_speakers: int,
script: str,
speaker_1: str = None,
speaker_2: str = None,
speaker_3: str = None,
speaker_4: str = None,
cfg_scale: float = 1.3):
"""
Generates a podcast as a single audio file from a script and saves it.
This is a non-streaming function.
"""
try:
self.model = self.model.to(self.device)
print(f"Model successfully moved to device: {self.device.upper()}")
# Step 3: Continue with the rest of your setup.
self.model.eval()
self.model.set_ddpm_inference_steps(num_steps=self.inference_steps)
# 1. Set generating state and validate inputs
self.is_generating = True
if not script.strip():
raise gr.Error("Error: Please provide a script.")
# Defend against common mistake with apostrophes
script = script.replace("’", "'")
if not 1 <= num_speakers <= 4:
raise gr.Error("Error: Number of speakers must be between 1 and 4.")
# 2. Collect and validate selected speakers
selected_speakers = [speaker_1, speaker_2, speaker_3, speaker_4][:num_speakers]
for i, speaker_name in enumerate(selected_speakers):
if not speaker_name or speaker_name not in self.available_voices:
raise gr.Error(f"Error: Please select a valid speaker for Speaker {i+1}.")
# 3. Build initial log
log = f"πŸŽ™οΈ Generating podcast with {num_speakers} speakers\n"
log += f"πŸ“Š Parameters: CFG Scale={cfg_scale}\n"
log += f"🎭 Speakers: {', '.join(selected_speakers)}\n"
# 4. Load voice samples
voice_samples = []
for speaker_name in selected_speakers:
audio_path = self.available_voices[speaker_name]
# Assuming self.read_audio is a method in your class that returns audio data
audio_data = self.read_audio(audio_path)
if len(audio_data) == 0:
raise gr.Error(f"Error: Failed to load audio for {speaker_name}")
voice_samples.append(audio_data)
log += f"βœ… Loaded {len(voice_samples)} voice samples\n"
# 5. Parse and format the script
lines = script.strip().split('\n')
formatted_script_lines = []
for line in lines:
line = line.strip()
if not line:
continue
# Check if line already has speaker format (e.g., "Speaker 1: ...")
if line.startswith('Speaker ') and ':' in line:
formatted_script_lines.append(line)
else:
# Auto-assign speakers in rotation
speaker_id = len(formatted_script_lines) % num_speakers
formatted_script_lines.append(f"Speaker {speaker_id}: {line}")
formatted_script = '\n'.join(formatted_script_lines)
log += f"πŸ“ Formatted script with {len(formatted_script_lines)} turns\n"
log += "πŸ”„ Processing with VibeVoice...\n"
# 6. Prepare inputs for the model
# Assuming self.processor is an object available in your class
inputs = self.processor(
text=[formatted_script],
voice_samples=[voice_samples],
padding=True,
return_tensors="pt",
return_attention_mask=True,
)
# 7. Generate audio
start_time = time.time()
# Assuming self.model is an object available in your class
outputs = self.model.generate(
**inputs,
max_new_tokens=None,
cfg_scale=cfg_scale,
tokenizer=self.processor.tokenizer,
generation_config={'do_sample': False},
verbose=False, # Verbose is off for cleaner logs
)
generation_time = time.time() - start_time
# 8. Extract audio output
# The generated audio is often in speech_outputs or a similar attribute
if hasattr(outputs, 'speech_outputs') and outputs.speech_outputs[0] is not None:
audio_tensor = outputs.speech_outputs[0]
audio = audio_tensor.cpu().float().numpy()
else:
raise gr.Error("❌ Error: No audio was generated by the model. Please try again.")
# Ensure audio is a 1D array
if audio.ndim > 1:
audio = audio.squeeze()
sample_rate = 24000 # Standard sample rate for this model
# 9. Save the audio file
output_dir = "outputs"
os.makedirs(output_dir, exist_ok=True)
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
file_path = os.path.join(output_dir, f"podcast_{timestamp}.wav")
# Write the NumPy array to a WAV file
sf.write(file_path, audio, sample_rate)
print(f"πŸ’Ύ Podcast saved to {file_path}")
# 10. Finalize log and return
total_duration = len(audio) / sample_rate
log += f"⏱️ Generation completed in {generation_time:.2f} seconds\n"
log += f"🎡 Final audio duration: {total_duration:.2f} seconds\n"
log += f"βœ… Successfully saved podcast to: {file_path}\n"
self.is_generating = False
return (sample_rate, audio), log
except gr.Error as e:
# Handle Gradio-specific errors (for user feedback)
self.is_generating = False
error_msg = f"❌ Input Error: {str(e)}"
print(error_msg)
# In Gradio, you would typically return an update to the UI
# For a pure function, we re-raise or handle it as needed.
# This return signature matches the success case but with error info.
return None, error_msg
except Exception as e:
# Handle all other unexpected errors
self.is_generating = False
error_msg = f"❌ An unexpected error occurred: {str(e)}"
print(error_msg)
import traceback
traceback.print_exc()
return None, error_msg
@staticmethod
def _infer_num_speakers_from_script(script: str) -> int:
"""
Infer number of speakers by counting distinct 'Speaker X:' tags in the script.
Robust to 0- or 1-indexed labels and repeated turns.
Falls back to 1 if none found.
"""
import re
ids = re.findall(r'(?mi)^\s*Speaker\s+(\d+)\s*:', script)
return len({int(x) for x in ids}) if ids else 1
def load_example_scripts(self):
examples_dir = os.path.join(os.path.dirname(__file__), "text_examples")
self.example_scripts = []
if not os.path.exists(examples_dir):
return
txt_files = sorted(
[f for f in os.listdir(examples_dir) if f.lower().endswith('.txt')]
)
for txt_file in txt_files:
try:
with open(os.path.join(examples_dir, txt_file), 'r', encoding='utf-8') as f:
script_content = f.read().strip()
if script_content:
num_speakers = self._infer_num_speakers_from_script(script_content)
self.example_scripts.append([num_speakers, script_content])
except Exception as e:
print(f"Error loading {txt_file}: {e}")
def convert_to_16_bit_wav(data):
if torch.is_tensor(data):
data = data.detach().cpu().numpy()
data = np.array(data)
if np.max(np.abs(data)) > 1.0:
data = data / np.max(np.abs(data))
return (data * 32767).astype(np.int16)
def create_demo_interface(demo_instance: VibeVoiceDemo):
"""Create the Gradio interface (final audio only, no streaming)."""
# Custom CSS for high-end aesthetics
custom_css = """ ... """ # (keep your CSS unchanged)
with gr.Blocks(
title="VibeVoice - AI Podcast Generator",
css=custom_css,
theme=gr.themes.Soft(
primary_hue="blue",
secondary_hue="purple",
neutral_hue="slate",
)
) as interface:
# Header
gr.HTML("""
<div class="main-header">
<h1>πŸŽ™οΈ Vibe Podcasting</h1>
<p>Generating Long-form Multi-speaker AI Podcast with VibeVoice</p>
</div>
""")
with gr.Row():
# Left column - Settings
with gr.Column(scale=1, elem_classes="settings-card"):
gr.Markdown("### πŸŽ›οΈ **Podcast Settings**")
num_speakers = gr.Slider(
minimum=1, maximum=4, value=2, step=1,
label="Number of Speakers",
elem_classes="slider-container"
)
gr.Markdown("### 🎭 **Speaker Selection**")
available_speaker_names = list(demo_instance.available_voices.keys())
default_speakers = ['en-Alice_woman', 'en-Carter_man', 'en-Frank_man', 'en-Maya_woman']
speaker_selections = []
for i in range(4):
default_value = default_speakers[i] if i < len(default_speakers) else None
speaker = gr.Dropdown(
choices=available_speaker_names,
value=default_value,
label=f"Speaker {i+1}",
visible=(i < 2),
elem_classes="speaker-item"
)
speaker_selections.append(speaker)
gr.Markdown("### βš™οΈ **Advanced Settings**")
with gr.Accordion("Generation Parameters", open=False):
cfg_scale = gr.Slider(
minimum=1.0, maximum=2.0, value=1.3, step=0.05,
label="CFG Scale (Guidance Strength)",
elem_classes="slider-container"
)
# Right column - Generation
with gr.Column(scale=2, elem_classes="generation-card"):
gr.Markdown("### πŸ“ **Script Input**")
script_input = gr.Textbox(
label="Conversation Script",
placeholder="Enter your podcast script here...",
lines=12,
max_lines=20,
elem_classes="script-input"
)
with gr.Row():
random_example_btn = gr.Button(
"🎲 Random Example", size="lg",
variant="secondary", elem_classes="random-btn", scale=1
)
generate_btn = gr.Button(
"πŸš€ Generate Podcast", size="lg",
variant="primary", elem_classes="generate-btn", scale=2
)
# Output section
gr.Markdown("### 🎡 **Generated Podcast**")
complete_audio_output = gr.Audio(
label="Complete Podcast (Download)",
type="numpy",
elem_classes="audio-output complete-audio-section",
autoplay=False,
show_download_button=True,
visible=True
)
log_output = gr.Textbox(
label="Generation Log",
lines=8, max_lines=15,
interactive=False,
elem_classes="log-output"
)
# === logic ===
def update_speaker_visibility(num_speakers):
return [gr.update(visible=(i < num_speakers)) for i in range(4)]
num_speakers.change(
fn=update_speaker_visibility,
inputs=[num_speakers],
outputs=speaker_selections
)
def generate_podcast_wrapper(num_speakers, script, *speakers_and_params):
try:
speakers = speakers_and_params[:4]
cfg_scale = speakers_and_params[4]
audio, log = demo_instance.generate_podcast(
num_speakers=int(num_speakers),
script=script,
speaker_1=speakers[0],
speaker_2=speakers[1],
speaker_3=speakers[2],
speaker_4=speakers[3],
cfg_scale=cfg_scale
)
return audio, log
except Exception as e:
traceback.print_exc()
return None, f"❌ Error: {str(e)}"
generate_btn.click(
fn=generate_podcast_wrapper,
inputs=[num_speakers, script_input] + speaker_selections + [cfg_scale],
outputs=[complete_audio_output, log_output],
queue=True
)
def load_random_example():
import random
examples = getattr(demo_instance, "example_scripts", [])
if not examples:
examples = [
[2, "Speaker 0: Welcome to our AI podcast demo!\nSpeaker 1: Thanks, excited to be here!"]
]
num_speakers_value, script_value = random.choice(examples)
return num_speakers_value, script_value
random_example_btn.click(
fn=load_random_example,
inputs=[],
outputs=[num_speakers, script_input],
queue=False
)
gr.Markdown("### πŸ“š **Example Scripts**")
examples = getattr(demo_instance, "example_scripts", []) or [
[1, "Speaker 1: Welcome to our AI podcast demo. This is a sample script."]
]
gr.Examples(
examples=examples,
inputs=[num_speakers, script_input],
label="Try these example scripts:"
)
return interface
def run_demo(
model_path: str = "aoi-ot/VibeVoice-Large",
device: str = "cuda",
inference_steps: int = 5,
share: bool = True,
):
set_seed(42)
demo_instance = VibeVoiceDemo(model_path, device, inference_steps)
interface = create_demo_interface(demo_instance)
interface.queue().launch(
share=share,
server_name="0.0.0.0" if share else "127.0.0.1",
show_error=True,
show_api=False
)
if __name__ == "__main__":
run_demo()