Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import sys | |
PROJECT_ROOT = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) | |
sys.path.append(PROJECT_ROOT) | |
import yaml | |
import argparse | |
from lightning import Trainer | |
from lightning.pytorch.loggers import WandbLogger | |
from trainer import XrayReg | |
import logging | |
import wandb | |
from lightning.pytorch.callbacks import LearningRateMonitor | |
def parse_args(): | |
parser = argparse.ArgumentParser(description="Train Xray Model") | |
parser.add_argument( | |
"--config", | |
type=str, | |
default="configs/config.yaml", | |
help="Path to the config file", | |
) | |
return parser.parse_args() | |
if __name__ == "__main__": | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
try: | |
args = parse_args() | |
with open(args.config, "r") as ymlfile: | |
config = yaml.safe_load(ymlfile) | |
wandb.init( | |
project=config.get("wandb_project", "xray_regression_noaug")) | |
wandb_logger = WandbLogger( | |
project=config.get("wandb_project", "xray_regression_noaug")) | |
lr_monitor = LearningRateMonitor(logging_interval="step") | |
trainer = Trainer( | |
max_epochs=config["training"]["max_epochs"], | |
log_every_n_steps=config["logging"]["log_every_n_steps"], | |
logger=wandb_logger, | |
callbacks=[lr_monitor]) | |
model = XrayReg(config) | |
logger.info("Starting training...") | |
trainer.fit(model) | |
logger.info("Training completed. Starting testing...") | |
trainer.test(model) | |
logger.info("Testing completed. Logging test results...") | |
model.save_test_results_to_wandb() | |
logger.info("Test results saved to Wandb") | |
wandb.finish() | |
except Exception as e: | |
logger.error(f"An error occurred: {e}") | |
sys.exit(1) | |