SATEv1.5 / transcription /transcription.py
Shuwei Hou
update_model_address
652e321
import os
import json
import torch
import numpy as np
import soundfile as sf
import re
from pathlib import Path
from typing import Optional, Union, List, Dict, Any
from transformers import WhisperProcessor, WhisperForConditionalGeneration
from .whisperx.audio import load_audio, SAMPLE_RATE
from .whisperx.vads import Pyannote, Silero
from .whisperx.types import TranscriptionResult, SingleSegment, AlignedTranscriptionResult
from .whisperx.alignment import load_align_model, align
class MazeWhisperModel:
def __init__(self, model_name: str = "sven33/maze-whisper-3000", device: str = "cuda"):
self.device = device
self.model_name = model_name
print(f"Loading Maze Whisper model: {model_name}")
self.processor = WhisperProcessor.from_pretrained(model_name)
self.model = WhisperForConditionalGeneration.from_pretrained(model_name).to(device)
self.tokenizer = self.processor.tokenizer
self.model.eval()
def transcribe_segment(self, audio_segment: np.ndarray) -> str:
with torch.no_grad():
inputs = self.processor(
audio_segment,
sampling_rate=SAMPLE_RATE,
return_tensors="pt"
).to(self.device)
generated_ids = self.model.generate(
inputs["input_features"],
max_length=448,
num_beams=5,
early_stopping=True,
use_cache=True
)
transcription = self.processor.batch_decode(
generated_ids,
skip_special_tokens=True
)[0]
return transcription.strip()
class WhisperXPipeline:
def __init__(self, model_name: str = "sven33/maze-whisper-3000", device: str = "cuda",
vad_method: str = "pyannote", chunk_size: int = 30,
enable_alignment: bool = True, align_language: str = "en"):
self.device = device
self.chunk_size = chunk_size
self.enable_alignment = enable_alignment
self.align_language = align_language
self.whisper_model = MazeWhisperModel(model_name, device)
self._init_vad_model(vad_method)
self.align_model = None
self.align_metadata = None
if enable_alignment:
self._init_alignment_model()
def _init_vad_model(self, vad_method: str):
default_vad_options = {
"chunk_size": self.chunk_size,
"vad_onset": 0.500,
"vad_offset": 0.363
}
if vad_method == "silero":
self.vad_model = Silero(**default_vad_options)
elif vad_method == "pyannote":
device_vad = f'cuda:0' if self.device == 'cuda' else self.device
self.vad_model = Pyannote(torch.device(device_vad), **default_vad_options)
else:
raise ValueError(f"Invalid vad_method: {vad_method}")
def _init_alignment_model(self):
try:
print(f"Loading alignment model for language: {self.align_language}")
self.align_model, self.align_metadata = load_align_model(
self.align_language,
self.device
)
except Exception as e:
print(f"Warning: Could not load alignment model: {e}")
print("Continuing without forced alignment...")
self.enable_alignment = False
def transcribe(self, audio: Union[str, np.ndarray], verbose: bool = False) -> Union[TranscriptionResult, AlignedTranscriptionResult]:
if isinstance(audio, str):
audio_path = audio
audio = load_audio(audio)
else:
audio_path = None
if hasattr(self.vad_model, 'preprocess_audio'):
waveform = self.vad_model.preprocess_audio(audio)
else:
waveform = torch.from_numpy(audio).unsqueeze(0)
vad_segments = self.vad_model({"waveform": waveform, "sample_rate": SAMPLE_RATE})
if hasattr(self.vad_model, 'merge_chunks'):
vad_segments = self.vad_model.merge_chunks(
vad_segments,
self.chunk_size,
onset=0.500,
offset=0.363,
)
segments: List[SingleSegment] = []
print(f"Processing {len(vad_segments)} segments...")
for idx, seg in enumerate(vad_segments):
start_sample = int(seg['start'] * SAMPLE_RATE)
end_sample = int(seg['end'] * SAMPLE_RATE)
audio_segment = audio[start_sample:end_sample]
text = self.whisper_model.transcribe_segment(audio_segment)
if not text.strip() or len(text.strip()) < 2:
if verbose:
print(f"Skipping empty/short segment {idx+1}: [{seg['start']:.3f}s - {seg['end']:.3f}s]")
continue
if verbose:
print(f"Segment {idx+1}/{len(vad_segments)}: [{seg['start']:.3f}s - {seg['end']:.3f}s] {text}")
segments.append({
"text": text,
"start": round(seg['start'], 3),
"end": round(seg['end'], 3)
})
result = {"segments": segments, "language": self.align_language}
if self.enable_alignment and self.align_model is not None and len(segments) > 0:
print("Preparing segments for forced alignment...")
cleaned_segments = []
for segment in segments:
original_text = segment["text"]
cleaned_text = clean_text_for_alignment(original_text)
if cleaned_text.strip() and len(cleaned_text.strip()) >= 2:
cleaned_segment = {
"text": cleaned_text,
"start": segment["start"],
"end": segment["end"]
}
cleaned_segments.append({
"cleaned": cleaned_segment,
"original": segment
})
if len(cleaned_segments) > 0:
print(f"Performing forced alignment on {len(cleaned_segments)} segments...")
try:
segments_for_alignment = [item["cleaned"] for item in cleaned_segments]
aligned_result = align(
segments_for_alignment,
self.align_model,
self.align_metadata,
audio_path if audio_path else audio,
self.device,
interpolate_method="nearest",
return_char_alignments=False,
print_progress=verbose
)
final_segments = []
aligned_segments = aligned_result.get("segments", [])
for i, aligned_seg in enumerate(aligned_segments):
if i < len(cleaned_segments):
original_segment = cleaned_segments[i]["original"]
final_segment = {
"text": original_segment["text"],
"start": aligned_seg["start"],
"end": aligned_seg["end"],
"words": aligned_seg.get("words", [])
}
if "words" in final_segment and final_segment["words"]:
final_segment["words"] = fix_word_alignment(
final_segment["words"],
original_segment["text"],
cleaned_segments[i]["cleaned"]["text"]
)
final_segments.append(final_segment)
final_result = {
"segments": final_segments,
"word_segments": [],
"language": self.align_language
}
for segment in final_segments:
if "words" in segment:
final_result["word_segments"].extend(segment["words"])
print(f"Alignment completed! {len(final_segments)} segments with {len(final_result['word_segments'])} words")
return final_result
except Exception as e:
print(f"Warning: Alignment failed: {e}")
print("Returning transcription without alignment...")
else:
print("Warning: No segments remaining after cleaning for alignment")
return result
def clean_text_for_alignment(text: str) -> str:
cleaned_text = re.sub(r'<[^>]*>', '', text)
cleaned_text = re.sub(r'[\[\]{}]', '', cleaned_text)
cleaned_text = re.sub(r'[^\w\s\.\,\?\!\-\']', '', cleaned_text)
cleaned_text = cleaned_text.replace('.', '')
cleaned_text = re.sub(r'\s+', ' ', cleaned_text).strip()
return cleaned_text
def fix_word_alignment(words: List[Dict], original_text: str, cleaned_text: str) -> List[Dict]:
try:
original_tokens = original_text.split()
cleaned_tokens = cleaned_text.split()
if len(words) == 0 or len(cleaned_tokens) == 0:
return words
if abs(len(original_tokens) - len(cleaned_tokens)) <= 1:
return words
# print(f"Warning: Word alignment might be imperfect due to text cleaning")
return words
except Exception as e:
print(f"Warning: Could not fix word alignment: {e}")
return words
def generate_session_id() -> str:
session_data_dir = Path("./session_data")
if not session_data_dir.exists():
return "000001"
existing_sessions = []
for item in session_data_dir.iterdir():
if item.is_dir() and item.name.isdigit() and len(item.name) == 6:
existing_sessions.append(int(item.name))
if not existing_sessions:
return "000001"
next_id = max(existing_sessions) + 1
return f"{next_id:06d}"
def translate_audio_file(model: str = "mazeWhisper", audio_path: str = "", device: str = "cuda",
enable_alignment: bool = True, align_language: str = "en", original_filename: str = None) -> Dict[str, Any]:
if model != "mazeWhisper":
raise ValueError("Currently only 'mazeWhisper' model is supported")
if not os.path.exists(audio_path):
raise FileNotFoundError(f"Audio file not found: {audio_path}")
session_id = generate_session_id()
session_data_dir = Path("./session_data")
session_dir = session_data_dir / session_id
session_dir.mkdir(parents=True, exist_ok=True)
print(f"Session ID: {session_id}")
print(f"Session directory: {session_dir}")
try:
pipeline = WhisperXPipeline(
model_name="sven33/maze-whisper-3000",
device=device,
vad_method="pyannote",
chunk_size=10,
enable_alignment=enable_alignment,
align_language=align_language
)
audio = load_audio(audio_path)
print("Starting transcription...")
result = pipeline.transcribe(audio_path, verbose=True)
has_word_timestamps = (
isinstance(result, dict) and
"segments" in result and
len(result["segments"]) > 0 and
"words" in result["segments"][0]
)
formatted_segments = []
for segment in result["segments"]:
formatted_segment = {
"start": segment["start"],
"end": segment["end"],
"speaker": "", # Initialize as empty
"text": segment["text"],
"words": []
}
if "words" in segment and segment["words"]:
for word_info in segment["words"]:
formatted_word = {
"word": word_info["word"],
"start": word_info["start"],
"end": word_info["end"]
}
formatted_segment["words"].append(formatted_word)
formatted_segments.append(formatted_segment)
# Create final output structure with segments wrapper
filename = original_filename if original_filename else os.path.basename(audio_path)
output_data = {
"filename": filename,
"segments": formatted_segments
}
json_path = session_dir / "transcription.json"
with open(json_path, 'w', encoding='utf-8') as f:
json.dump(output_data, f, ensure_ascii=False, indent=2)
print(f"Transcription saved: {json_path}")
if has_word_timestamps:
total_words = sum(len(seg.get("words", [])) for seg in result["segments"])
print(f"Forced alignment completed! Total words with timestamps: {total_words}")
elif enable_alignment:
print("Forced alignment was enabled but failed - only segment-level timestamps available")
else:
print("Forced alignment disabled - only segment-level timestamps available")
print(f"Transcription complete! Session: {session_id}")
result_data = {
"session_id": session_id,
"audio_path": audio_path,
"model": "sven33/maze-whisper-3000",
"device": device,
"alignment_enabled": enable_alignment,
"has_word_timestamps": has_word_timestamps,
"align_language": align_language,
"transcription": result
}
return result_data, session_id
except Exception as e:
print(f"Error during transcription: {str(e)}")
raise
if __name__ == "__main__":
print("use main_socket to test transcription model")