|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import argparse |
|
import logging |
|
from functools import lru_cache |
|
from pathlib import Path |
|
from typing import Any, Dict, Optional |
|
|
|
import torch |
|
from lhotse import CutSet, load_manifest_lazy |
|
from lhotse.dataset import DynamicBucketingSampler, SimpleCutSampler |
|
from lhotse.dataset.input_strategies import OnTheFlyFeatures, PrecomputedFeatures |
|
from lhotse.utils import fix_random_seed |
|
from torch.utils.data import DataLoader |
|
|
|
from zipvoice.dataset.dataset import SpeechSynthesisDataset |
|
from zipvoice.utils.common import str2bool |
|
from zipvoice.utils.feature import VocosFbank |
|
|
|
|
|
class _SeedWorkers: |
|
def __init__(self, seed: int): |
|
self.seed = seed |
|
|
|
def __call__(self, worker_id: int): |
|
fix_random_seed(self.seed + worker_id) |
|
|
|
|
|
SAMPLING_RATE = 24000 |
|
|
|
|
|
class TtsDataModule: |
|
""" |
|
DataModule for tts experiments. |
|
It assumes there is always one train and valid dataloader, |
|
but there can be multiple test dataloaders (e.g. LibriSpeech test-clean |
|
and test-other). |
|
|
|
It contains all the common data pipeline modules used in ASR |
|
experiments, e.g.: |
|
- dynamic batch size, |
|
- bucketing samplers, |
|
- cut concatenation, |
|
- on-the-fly feature extraction |
|
|
|
This class should be derived for specific corpora used in ASR tasks. |
|
""" |
|
|
|
def __init__(self, args: argparse.Namespace): |
|
self.args = args |
|
|
|
@classmethod |
|
def add_arguments(cls, parser: argparse.ArgumentParser): |
|
group = parser.add_argument_group( |
|
title="TTS data related options", |
|
description="These options are used for the preparation of " |
|
"PyTorch DataLoaders from Lhotse CutSet's -- they control the " |
|
"effective batch sizes, sampling strategies, applied data " |
|
"augmentations, etc.", |
|
) |
|
group.add_argument( |
|
"--manifest-dir", |
|
type=Path, |
|
default=Path("data/fbank"), |
|
help="Path to directory with train/valid/test cuts.", |
|
) |
|
group.add_argument( |
|
"--max-duration", |
|
type=int, |
|
default=200.0, |
|
help="Maximum pooled recordings duration (seconds) in a " |
|
"single batch. You can reduce it if it causes CUDA OOM.", |
|
) |
|
group.add_argument( |
|
"--bucketing-sampler", |
|
type=str2bool, |
|
default=True, |
|
help="When enabled, the batches will come from buckets of " |
|
"similar duration (saves padding frames).", |
|
) |
|
group.add_argument( |
|
"--num-buckets", |
|
type=int, |
|
default=30, |
|
help="The number of buckets for the DynamicBucketingSampler" |
|
"(you might want to increase it for larger datasets).", |
|
) |
|
|
|
group.add_argument( |
|
"--on-the-fly-feats", |
|
type=str2bool, |
|
default=False, |
|
help="When enabled, use on-the-fly cut mixing and feature " |
|
"extraction. Will drop existing precomputed feature manifests " |
|
"if available.", |
|
) |
|
group.add_argument( |
|
"--shuffle", |
|
type=str2bool, |
|
default=True, |
|
help="When enabled (=default), the examples will be " |
|
"shuffled for each epoch.", |
|
) |
|
group.add_argument( |
|
"--drop-last", |
|
type=str2bool, |
|
default=True, |
|
help="Whether to drop last batch. Used by sampler.", |
|
) |
|
group.add_argument( |
|
"--return-cuts", |
|
type=str2bool, |
|
default=False, |
|
help="When enabled, each batch will have the " |
|
"field: batch['cut'] with the cuts that " |
|
"were used to construct it.", |
|
) |
|
group.add_argument( |
|
"--num-workers", |
|
type=int, |
|
default=8, |
|
help="The number of training dataloader workers that " |
|
"collect the batches.", |
|
) |
|
|
|
group.add_argument( |
|
"--input-strategy", |
|
type=str, |
|
default="PrecomputedFeatures", |
|
help="AudioSamples or PrecomputedFeatures", |
|
) |
|
|
|
def train_dataloaders( |
|
self, |
|
cuts_train: CutSet, |
|
sampler_state_dict: Optional[Dict[str, Any]] = None, |
|
) -> DataLoader: |
|
""" |
|
Args: |
|
cuts_train: |
|
CutSet for training. |
|
sampler_state_dict: |
|
The state dict for the training sampler. |
|
""" |
|
logging.info("About to create train dataset") |
|
|
|
train = SpeechSynthesisDataset( |
|
return_text=True, |
|
return_tokens=True, |
|
return_spk_ids=True, |
|
feature_input_strategy=OnTheFlyFeatures(VocosFbank()) |
|
if self.args.on_the_fly_feats |
|
else PrecomputedFeatures(), |
|
return_cuts=self.args.return_cuts, |
|
) |
|
|
|
if self.args.bucketing_sampler: |
|
logging.info("Using DynamicBucketingSampler.") |
|
train_sampler = DynamicBucketingSampler( |
|
cuts_train, |
|
max_duration=self.args.max_duration, |
|
shuffle=self.args.shuffle, |
|
num_buckets=self.args.num_buckets, |
|
buffer_size=self.args.num_buckets * 2000, |
|
shuffle_buffer_size=self.args.num_buckets * 5000, |
|
drop_last=self.args.drop_last, |
|
) |
|
else: |
|
logging.info("Using SimpleCutSampler.") |
|
train_sampler = SimpleCutSampler( |
|
cuts_train, |
|
max_duration=self.args.max_duration, |
|
shuffle=self.args.shuffle, |
|
) |
|
logging.info("About to create train dataloader") |
|
|
|
if sampler_state_dict is not None: |
|
logging.info("Loading sampler state dict") |
|
train_sampler.load_state_dict(sampler_state_dict) |
|
|
|
|
|
|
|
seed = torch.randint(0, 100000, ()).item() |
|
worker_init_fn = _SeedWorkers(seed) |
|
|
|
train_dl = DataLoader( |
|
train, |
|
sampler=train_sampler, |
|
batch_size=None, |
|
num_workers=self.args.num_workers, |
|
persistent_workers=False, |
|
worker_init_fn=worker_init_fn, |
|
) |
|
|
|
return train_dl |
|
|
|
def dev_dataloaders(self, cuts_valid: CutSet) -> DataLoader: |
|
logging.info("About to create dev dataset") |
|
validate = SpeechSynthesisDataset( |
|
return_text=True, |
|
return_tokens=True, |
|
return_spk_ids=True, |
|
feature_input_strategy=OnTheFlyFeatures(VocosFbank()) |
|
if self.args.on_the_fly_feats |
|
else PrecomputedFeatures(), |
|
return_cuts=self.args.return_cuts, |
|
) |
|
dev_sampler = DynamicBucketingSampler( |
|
cuts_valid, |
|
max_duration=self.args.max_duration, |
|
shuffle=False, |
|
) |
|
logging.info("About to create valid dataloader") |
|
dev_dl = DataLoader( |
|
validate, |
|
sampler=dev_sampler, |
|
batch_size=None, |
|
num_workers=2, |
|
persistent_workers=False, |
|
) |
|
|
|
return dev_dl |
|
|
|
def test_dataloaders(self, cuts: CutSet) -> DataLoader: |
|
logging.info("About to create test dataset") |
|
test = SpeechSynthesisDataset( |
|
return_text=True, |
|
return_tokens=True, |
|
return_spk_ids=True, |
|
feature_input_strategy=OnTheFlyFeatures(VocosFbank()) |
|
if self.args.on_the_fly_feats |
|
else PrecomputedFeatures(), |
|
return_cuts=self.args.return_cuts, |
|
return_audio=True, |
|
) |
|
test_sampler = DynamicBucketingSampler( |
|
cuts, |
|
max_duration=self.args.max_duration, |
|
shuffle=False, |
|
) |
|
logging.info("About to create test dataloader") |
|
test_dl = DataLoader( |
|
test, |
|
batch_size=None, |
|
sampler=test_sampler, |
|
num_workers=self.args.num_workers, |
|
) |
|
return test_dl |
|
|
|
@lru_cache() |
|
def train_custom_cuts(self, manifest_file) -> CutSet: |
|
logging.info(f"About to get the custom training cuts {manifest_file}") |
|
return load_manifest_lazy(manifest_file) |
|
|
|
@lru_cache() |
|
def dev_custom_cuts(self, manifest_file) -> CutSet: |
|
logging.info(f"About to get the custom validation cuts {manifest_file}") |
|
return load_manifest_lazy(manifest_file) |
|
|
|
@lru_cache() |
|
def train_emilia_EN_cuts(self) -> CutSet: |
|
logging.info("About to get train the EN subset") |
|
return load_manifest_lazy(self.args.manifest_dir / "emilia_cuts_EN.jsonl.gz") |
|
|
|
@lru_cache() |
|
def train_emilia_ZH_cuts(self) -> CutSet: |
|
logging.info("About to get train the ZH subset") |
|
return load_manifest_lazy(self.args.manifest_dir / "emilia_cuts_ZH.jsonl.gz") |
|
|
|
@lru_cache() |
|
def dev_emilia_EN_cuts(self) -> CutSet: |
|
logging.info("About to get dev the EN subset") |
|
return load_manifest_lazy( |
|
self.args.manifest_dir / "emilia_cuts_EN-dev.jsonl.gz" |
|
) |
|
|
|
@lru_cache() |
|
def dev_emilia_ZH_cuts(self) -> CutSet: |
|
logging.info("About to get dev the ZH subset") |
|
return load_manifest_lazy( |
|
self.args.manifest_dir / "emilia_cuts_ZH-dev.jsonl.gz" |
|
) |
|
|
|
@lru_cache() |
|
def train_libritts_cuts(self) -> CutSet: |
|
logging.info( |
|
"About to get the shuffled train-clean-100, \ |
|
train-clean-360 and train-other-500 cuts" |
|
) |
|
return load_manifest_lazy( |
|
self.args.manifest_dir / "libritts_cuts_train-all-shuf.jsonl.gz" |
|
) |
|
|
|
@lru_cache() |
|
def dev_libritts_cuts(self) -> CutSet: |
|
logging.info("About to get dev-clean cuts") |
|
return load_manifest_lazy( |
|
self.args.manifest_dir / "libritts_cuts_dev-clean.jsonl.gz" |
|
) |
|
|