|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import copy |
|
import logging |
|
import math |
|
import random |
|
from typing import Optional, Tuple, Union |
|
|
|
import torch |
|
from torch import Tensor, nn |
|
|
|
from zipvoice.models.modules.scaling import ( |
|
ActivationDropoutAndLinear, |
|
Balancer, |
|
BiasNorm, |
|
Dropout2, |
|
FloatLike, |
|
Identity, |
|
ScaledLinear, |
|
ScheduledFloat, |
|
SwooshR, |
|
Whiten, |
|
limit_param_value, |
|
penalize_abs_values_gt, |
|
softmax, |
|
) |
|
|
|
|
|
def timestep_embedding(timesteps, dim, max_period=10000): |
|
"""Create sinusoidal timestep embeddings. |
|
|
|
:param timesteps: shape of (N) or (N, T) |
|
:param dim: the dimension of the output. |
|
:param max_period: controls the minimum frequency of the embeddings. |
|
:return: an Tensor of positional embeddings. shape of (N, dim) or (T, N, dim) |
|
""" |
|
half = dim // 2 |
|
freqs = torch.exp( |
|
-math.log(max_period) |
|
* torch.arange(start=0, end=half, dtype=torch.float32, device=timesteps.device) |
|
/ half |
|
) |
|
|
|
if timesteps.dim() == 2: |
|
timesteps = timesteps.transpose(0, 1) |
|
|
|
args = timesteps[..., None].float() * freqs[None] |
|
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) |
|
if dim % 2: |
|
embedding = torch.cat([embedding, torch.zeros_like(embedding[..., :1])], dim=-1) |
|
return embedding |
|
|
|
|
|
class TTSZipformer(nn.Module): |
|
""" |
|
Args: |
|
|
|
Note: all "int or Tuple[int]" arguments below will be treated as lists of the same |
|
length as downsampling_factor if they are single ints or one-element tuples. |
|
The length of downsampling_factor defines the number of stacks. |
|
|
|
downsampling_factor (Tuple[int]): downsampling factor for each encoder stack. |
|
Note: this is in addition to the downsampling factor of 2 that is applied in |
|
the frontend (self.encoder_embed). |
|
encoder_dim (Tuple[int]): embedding dimension of each of the encoder stacks, |
|
one per encoder stack. |
|
num_encoder_layers (int or Tuple[int])): number of encoder layers for each stack |
|
query_head_dim (int or Tuple[int]): dimension of query and key per attention |
|
head: per stack, if a tuple.. |
|
pos_head_dim (int or Tuple[int]): dimension of positional-encoding projection |
|
per attention head |
|
value_head_dim (int or Tuple[int]): dimension of value in each attention head |
|
num_heads: (int or Tuple[int]): number of heads in the self-attention mechanism. |
|
Must be at least 4. |
|
feedforward_dim (int or Tuple[int]): hidden dimension in feedforward modules |
|
cnn_module_kernel (int or Tuple[int])): Kernel size of convolution module |
|
|
|
pos_dim (int): the dimension of each positional-encoding vector prior to |
|
projection, e.g. 128. |
|
|
|
dropout (float): dropout rate |
|
warmup_batches (float): number of batches to warm up over; this controls |
|
dropout of encoder layers. |
|
use_time_embed: (bool): if True, take time embedding as an additional input. |
|
time_embed_dim: (int): the dimension of the time embedding. |
|
use_guidance_scale_embed (bool): if True, take guidance scale embedding as |
|
an additional input. |
|
guidance_scale_embed_dim: (int): the dimension of the guidance scale embedding. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_dim: int, |
|
out_dim: int, |
|
downsampling_factor: Union[int, Tuple[int]] = (2, 4), |
|
num_encoder_layers: Union[int, Tuple[int]] = 4, |
|
cnn_module_kernel: Union[int, Tuple[int]] = 31, |
|
encoder_dim: int = 384, |
|
query_head_dim: int = 24, |
|
pos_head_dim: int = 4, |
|
value_head_dim: int = 12, |
|
num_heads: int = 8, |
|
feedforward_dim: int = 1536, |
|
pos_dim: int = 192, |
|
dropout: FloatLike = None, |
|
warmup_batches: float = 4000.0, |
|
use_time_embed: bool = True, |
|
time_embed_dim: int = 192, |
|
use_guidance_scale_embed: bool = False, |
|
guidance_scale_embed_dim: int = 192, |
|
use_conv: bool = True, |
|
) -> None: |
|
super(TTSZipformer, self).__init__() |
|
|
|
if dropout is None: |
|
dropout = ScheduledFloat((0.0, 0.3), (20000.0, 0.1)) |
|
if isinstance(downsampling_factor, int): |
|
downsampling_factor = (downsampling_factor,) |
|
|
|
def _to_tuple(x): |
|
"""Converts a single int or a 1-tuple of an int to a tuple with the same |
|
length as downsampling_factor""" |
|
if isinstance(x, int): |
|
x = (x,) |
|
if len(x) == 1: |
|
x = x * len(downsampling_factor) |
|
else: |
|
assert len(x) == len(downsampling_factor) and isinstance(x[0], int) |
|
return x |
|
|
|
def _assert_downsampling_factor(factors): |
|
"""assert downsampling_factor follows u-net style""" |
|
assert factors[0] == 1 and factors[-1] == 1 |
|
|
|
for i in range(1, len(factors) // 2 + 1): |
|
assert factors[i] == factors[i - 1] * 2 |
|
|
|
for i in range(len(factors) // 2 + 1, len(factors)): |
|
assert factors[i] * 2 == factors[i - 1] |
|
|
|
_assert_downsampling_factor(downsampling_factor) |
|
self.downsampling_factor = downsampling_factor |
|
num_encoder_layers = _to_tuple(num_encoder_layers) |
|
self.cnn_module_kernel = cnn_module_kernel = _to_tuple(cnn_module_kernel) |
|
self.encoder_dim = encoder_dim |
|
self.num_encoder_layers = num_encoder_layers |
|
self.query_head_dim = query_head_dim |
|
self.value_head_dim = value_head_dim |
|
self.num_heads = num_heads |
|
|
|
self.use_time_embed = use_time_embed |
|
self.use_guidance_scale_embed = use_guidance_scale_embed |
|
|
|
self.time_embed_dim = time_embed_dim |
|
if self.use_time_embed: |
|
assert time_embed_dim != -1 |
|
else: |
|
time_embed_dim = -1 |
|
self.guidance_scale_embed_dim = guidance_scale_embed_dim |
|
|
|
self.in_proj = nn.Linear(in_dim, encoder_dim) |
|
self.out_proj = nn.Linear(encoder_dim, out_dim) |
|
|
|
|
|
encoders = [] |
|
|
|
num_encoders = len(downsampling_factor) |
|
for i in range(num_encoders): |
|
encoder_layer = Zipformer2EncoderLayer( |
|
embed_dim=encoder_dim, |
|
pos_dim=pos_dim, |
|
num_heads=num_heads, |
|
query_head_dim=query_head_dim, |
|
pos_head_dim=pos_head_dim, |
|
value_head_dim=value_head_dim, |
|
feedforward_dim=feedforward_dim, |
|
use_conv=use_conv, |
|
cnn_module_kernel=cnn_module_kernel[i], |
|
dropout=dropout, |
|
) |
|
|
|
|
|
|
|
encoder = Zipformer2Encoder( |
|
encoder_layer, |
|
num_encoder_layers[i], |
|
embed_dim=encoder_dim, |
|
time_embed_dim=time_embed_dim, |
|
pos_dim=pos_dim, |
|
warmup_begin=warmup_batches * (i + 1) / (num_encoders + 1), |
|
warmup_end=warmup_batches * (i + 2) / (num_encoders + 1), |
|
final_layerdrop_rate=0.035 * (downsampling_factor[i] ** 0.5), |
|
) |
|
|
|
if downsampling_factor[i] != 1: |
|
encoder = DownsampledZipformer2Encoder( |
|
encoder, |
|
dim=encoder_dim, |
|
downsample=downsampling_factor[i], |
|
) |
|
|
|
encoders.append(encoder) |
|
|
|
self.encoders = nn.ModuleList(encoders) |
|
if self.use_time_embed: |
|
self.time_embed = nn.Sequential( |
|
nn.Linear(time_embed_dim, time_embed_dim * 2), |
|
SwooshR(), |
|
nn.Linear(time_embed_dim * 2, time_embed_dim), |
|
) |
|
else: |
|
self.time_embed = None |
|
|
|
if self.use_guidance_scale_embed: |
|
self.guidance_scale_embed = ScaledLinear( |
|
guidance_scale_embed_dim, |
|
time_embed_dim, |
|
bias=False, |
|
initial_scale=0.1, |
|
) |
|
else: |
|
self.guidance_scale_embed = None |
|
|
|
def forward( |
|
self, |
|
x: Tensor, |
|
t: Optional[Tensor] = None, |
|
padding_mask: Optional[Tensor] = None, |
|
guidance_scale: Optional[Tensor] = None, |
|
) -> Tuple[Tensor, Tensor]: |
|
""" |
|
Args: |
|
x: |
|
The input tensor. Its shape is (batch_size, seq_len, feature_dim). |
|
t: |
|
A t tensor of shape (batch_size,) or (batch_size, seq_len) |
|
padding_mask: |
|
The mask for padding, of shape (batch_size, seq_len); True means |
|
masked position. May be None. |
|
guidance_scale: |
|
The guidance scale in classifier-free guidance of distillation model. |
|
Returns: |
|
Return the output embeddings. its shape is |
|
(batch_size, output_seq_len, encoder_dim) |
|
""" |
|
x = x.permute(1, 0, 2) |
|
x = self.in_proj(x) |
|
|
|
if t is not None: |
|
assert t.dim() == 1 or t.dim() == 2, t.shape |
|
time_emb = timestep_embedding(t, self.time_embed_dim) |
|
if guidance_scale is not None: |
|
assert ( |
|
guidance_scale.dim() == 1 or guidance_scale.dim() == 2 |
|
), guidance_scale.shape |
|
guidance_scale_emb = self.guidance_scale_embed( |
|
timestep_embedding(guidance_scale, self.guidance_scale_embed_dim) |
|
) |
|
time_emb = time_emb + guidance_scale_emb |
|
time_emb = self.time_embed(time_emb) |
|
else: |
|
time_emb = None |
|
|
|
attn_mask = None |
|
|
|
for i, module in enumerate(self.encoders): |
|
x = module( |
|
x, |
|
time_emb=time_emb, |
|
src_key_padding_mask=padding_mask, |
|
attn_mask=attn_mask, |
|
) |
|
x = self.out_proj(x) |
|
x = x.permute(1, 0, 2) |
|
return x |
|
|
|
|
|
def _whitening_schedule(x: float, ratio: float = 2.0) -> ScheduledFloat: |
|
return ScheduledFloat((0.0, x), (20000.0, ratio * x), default=x) |
|
|
|
|
|
class Zipformer2EncoderLayer(nn.Module): |
|
""" |
|
Args: |
|
embed_dim: the number of expected features in the input (required). |
|
nhead: the number of heads in the multiheadattention models (required). |
|
feedforward_dim: the dimension of the feedforward network model (required). |
|
dropout: the dropout value (default=0.1). |
|
cnn_module_kernel (int): Kernel size of convolution module (default=31). |
|
|
|
Examples:: |
|
>>> encoder_layer = Zipformer2EncoderLayer(embed_dim=512, nhead=8) |
|
>>> src = torch.rand(10, 32, 512) |
|
>>> pos_emb = torch.rand(32, 19, 512) |
|
>>> out = encoder_layer(src, pos_emb) |
|
""" |
|
|
|
def __init__( |
|
self, |
|
embed_dim: int, |
|
pos_dim: int, |
|
num_heads: int, |
|
query_head_dim: int, |
|
pos_head_dim: int, |
|
value_head_dim: int, |
|
feedforward_dim: int, |
|
dropout: FloatLike = 0.1, |
|
cnn_module_kernel: int = 31, |
|
use_conv: bool = True, |
|
attention_skip_rate: FloatLike = ScheduledFloat( |
|
(0.0, 0.2), (4000.0, 0.05), (16000, 0.0), default=0 |
|
), |
|
conv_skip_rate: FloatLike = ScheduledFloat( |
|
(0.0, 0.2), (4000.0, 0.05), (16000, 0.0), default=0 |
|
), |
|
const_attention_rate: FloatLike = ScheduledFloat( |
|
(0.0, 0.25), (4000.0, 0.025), default=0 |
|
), |
|
ff2_skip_rate: FloatLike = ScheduledFloat( |
|
(0.0, 0.1), (4000.0, 0.01), (50000.0, 0.0) |
|
), |
|
ff3_skip_rate: FloatLike = ScheduledFloat( |
|
(0.0, 0.1), (4000.0, 0.01), (50000.0, 0.0) |
|
), |
|
bypass_skip_rate: FloatLike = ScheduledFloat( |
|
(0.0, 0.5), (4000.0, 0.02), default=0 |
|
), |
|
) -> None: |
|
super(Zipformer2EncoderLayer, self).__init__() |
|
self.embed_dim = embed_dim |
|
|
|
|
|
self.bypass = BypassModule( |
|
embed_dim, skip_rate=bypass_skip_rate, straight_through_rate=0 |
|
) |
|
|
|
self.bypass_mid = BypassModule(embed_dim, straight_through_rate=0) |
|
|
|
|
|
self.attention_skip_rate = copy.deepcopy(attention_skip_rate) |
|
|
|
|
|
self.conv_skip_rate = copy.deepcopy(conv_skip_rate) |
|
|
|
|
|
|
|
self.ff2_skip_rate = copy.deepcopy(ff2_skip_rate) |
|
self.ff3_skip_rate = copy.deepcopy(ff3_skip_rate) |
|
|
|
self.const_attention_rate = copy.deepcopy(const_attention_rate) |
|
|
|
self.self_attn_weights = RelPositionMultiheadAttentionWeights( |
|
embed_dim, |
|
pos_dim=pos_dim, |
|
num_heads=num_heads, |
|
query_head_dim=query_head_dim, |
|
pos_head_dim=pos_head_dim, |
|
dropout=0.0, |
|
) |
|
|
|
self.self_attn1 = SelfAttention(embed_dim, num_heads, value_head_dim) |
|
|
|
self.self_attn2 = SelfAttention(embed_dim, num_heads, value_head_dim) |
|
|
|
self.feed_forward1 = FeedforwardModule( |
|
embed_dim, (feedforward_dim * 3) // 4, dropout |
|
) |
|
|
|
self.feed_forward2 = FeedforwardModule(embed_dim, feedforward_dim, dropout) |
|
|
|
self.feed_forward3 = FeedforwardModule( |
|
embed_dim, (feedforward_dim * 5) // 4, dropout |
|
) |
|
|
|
self.nonlin_attention = NonlinAttention( |
|
embed_dim, hidden_channels=3 * embed_dim // 4 |
|
) |
|
|
|
self.use_conv = use_conv |
|
|
|
if self.use_conv: |
|
self.conv_module1 = ConvolutionModule(embed_dim, cnn_module_kernel) |
|
|
|
self.conv_module2 = ConvolutionModule(embed_dim, cnn_module_kernel) |
|
|
|
self.norm = BiasNorm(embed_dim) |
|
|
|
self.balancer1 = Balancer( |
|
embed_dim, |
|
channel_dim=-1, |
|
min_positive=0.45, |
|
max_positive=0.55, |
|
min_abs=0.2, |
|
max_abs=4.0, |
|
) |
|
|
|
|
|
self.balancer_na = Balancer( |
|
embed_dim, |
|
channel_dim=-1, |
|
min_positive=0.3, |
|
max_positive=0.7, |
|
min_abs=ScheduledFloat((0.0, 0.004), (4000.0, 0.02)), |
|
prob=0.05, |
|
) |
|
|
|
|
|
|
|
|
|
self.balancer_ff2 = Balancer( |
|
embed_dim, |
|
channel_dim=-1, |
|
min_positive=0.3, |
|
max_positive=0.7, |
|
min_abs=ScheduledFloat((0.0, 0.0), (4000.0, 0.1), default=0.0), |
|
max_abs=2.0, |
|
prob=0.05, |
|
) |
|
|
|
self.balancer_ff3 = Balancer( |
|
embed_dim, |
|
channel_dim=-1, |
|
min_positive=0.3, |
|
max_positive=0.7, |
|
min_abs=ScheduledFloat((0.0, 0.0), (4000.0, 0.2), default=0.0), |
|
max_abs=4.0, |
|
prob=0.05, |
|
) |
|
|
|
self.whiten = Whiten( |
|
num_groups=1, |
|
whitening_limit=_whitening_schedule(4.0, ratio=3.0), |
|
prob=(0.025, 0.25), |
|
grad_scale=0.01, |
|
) |
|
|
|
self.balancer2 = Balancer( |
|
embed_dim, |
|
channel_dim=-1, |
|
min_positive=0.45, |
|
max_positive=0.55, |
|
min_abs=0.1, |
|
max_abs=4.0, |
|
) |
|
|
|
def get_sequence_dropout_mask( |
|
self, x: Tensor, dropout_rate: float |
|
) -> Optional[Tensor]: |
|
if ( |
|
dropout_rate == 0.0 |
|
or not self.training |
|
or torch.jit.is_scripting() |
|
or torch.jit.is_tracing() |
|
): |
|
return None |
|
batch_size = x.shape[1] |
|
mask = (torch.rand(batch_size, 1, device=x.device) > dropout_rate).to(x.dtype) |
|
return mask |
|
|
|
def sequence_dropout(self, x: Tensor, dropout_rate: float) -> Tensor: |
|
""" |
|
Apply sequence-level dropout to x. |
|
x shape: (seq_len, batch_size, embed_dim) |
|
""" |
|
dropout_mask = self.get_sequence_dropout_mask(x, dropout_rate) |
|
if dropout_mask is None: |
|
return x |
|
else: |
|
return x * dropout_mask |
|
|
|
def forward( |
|
self, |
|
src: Tensor, |
|
pos_emb: Tensor, |
|
time_emb: Optional[Tensor] = None, |
|
attn_mask: Optional[Tensor] = None, |
|
src_key_padding_mask: Optional[Tensor] = None, |
|
) -> Tensor: |
|
""" |
|
Pass the input through the encoder layer. |
|
Args: |
|
src: the sequence to the encoder (required): |
|
shape (seq_len, batch_size, embedding_dim). |
|
pos_emb: (1, 2*seq_len-1, pos_emb_dim) or |
|
(batch_size, 2*seq_len-1, pos_emb_dim) |
|
time_emb: the embedding representing the current timestep |
|
shape (batch_size, embedding_dim) or (seq_len, batch_size, embedding_dim). |
|
attn_mask: the attention mask, of shape (batch_size, seq_len, seq_len) |
|
or (seq_len, seq_len), interpreted as (batch_size, tgt_seq_len, src_seq_len) |
|
or (tgt_seq_len, src_seq_len). True means masked position. May be None. |
|
src_key_padding_mask: the mask for padding, of shape (batch_size, seq_len); |
|
True means masked position. May be None. |
|
|
|
Returns: |
|
A tensor which has the same shape as src |
|
""" |
|
src_orig = src |
|
|
|
|
|
if torch.jit.is_scripting() or torch.jit.is_tracing(): |
|
attention_skip_rate = 0.0 |
|
else: |
|
attention_skip_rate = ( |
|
float(self.attention_skip_rate) if self.training else 0.0 |
|
) |
|
|
|
|
|
attn_weights = self.self_attn_weights( |
|
src, |
|
pos_emb=pos_emb, |
|
attn_mask=attn_mask, |
|
key_padding_mask=src_key_padding_mask, |
|
) |
|
if time_emb is not None: |
|
|
|
src = src + time_emb |
|
|
|
src = src + self.feed_forward1(src) |
|
|
|
self_attn_dropout_mask = self.get_sequence_dropout_mask( |
|
src, attention_skip_rate |
|
) |
|
|
|
selected_attn_weights = attn_weights[0:1] |
|
if torch.jit.is_scripting() or torch.jit.is_tracing(): |
|
pass |
|
elif self.training and random.random() < float(self.const_attention_rate): |
|
|
|
|
|
|
|
|
|
selected_attn_weights = selected_attn_weights[0:1] |
|
selected_attn_weights = (selected_attn_weights > 0.0).to( |
|
selected_attn_weights.dtype |
|
) |
|
selected_attn_weights = selected_attn_weights * ( |
|
1.0 / selected_attn_weights.sum(dim=-1, keepdim=True) |
|
) |
|
|
|
na = self.balancer_na(self.nonlin_attention(src, selected_attn_weights)) |
|
|
|
src = src + ( |
|
na if self_attn_dropout_mask is None else na * self_attn_dropout_mask |
|
) |
|
|
|
self_attn = self.self_attn1(src, attn_weights) |
|
|
|
src = src + ( |
|
self_attn |
|
if self_attn_dropout_mask is None |
|
else self_attn * self_attn_dropout_mask |
|
) |
|
|
|
if self.use_conv: |
|
if torch.jit.is_scripting() or torch.jit.is_tracing(): |
|
conv_skip_rate = 0.0 |
|
else: |
|
conv_skip_rate = float(self.conv_skip_rate) if self.training else 0.0 |
|
|
|
if time_emb is not None: |
|
src = src + time_emb |
|
|
|
src = src + self.sequence_dropout( |
|
self.conv_module1( |
|
src, |
|
src_key_padding_mask=src_key_padding_mask, |
|
), |
|
conv_skip_rate, |
|
) |
|
|
|
if torch.jit.is_scripting() or torch.jit.is_tracing(): |
|
ff2_skip_rate = 0.0 |
|
else: |
|
ff2_skip_rate = float(self.ff2_skip_rate) if self.training else 0.0 |
|
src = src + self.sequence_dropout( |
|
self.balancer_ff2(self.feed_forward2(src)), ff2_skip_rate |
|
) |
|
|
|
|
|
src = self.bypass_mid(src_orig, src) |
|
|
|
self_attn = self.self_attn2(src, attn_weights) |
|
|
|
src = src + ( |
|
self_attn |
|
if self_attn_dropout_mask is None |
|
else self_attn * self_attn_dropout_mask |
|
) |
|
|
|
if self.use_conv: |
|
|
|
if torch.jit.is_scripting() or torch.jit.is_tracing(): |
|
conv_skip_rate = 0.0 |
|
else: |
|
conv_skip_rate = float(self.conv_skip_rate) if self.training else 0.0 |
|
|
|
if time_emb is not None: |
|
src = src + time_emb |
|
|
|
src = src + self.sequence_dropout( |
|
self.conv_module2( |
|
src, |
|
src_key_padding_mask=src_key_padding_mask, |
|
), |
|
conv_skip_rate, |
|
) |
|
|
|
if torch.jit.is_scripting() or torch.jit.is_tracing(): |
|
ff3_skip_rate = 0.0 |
|
else: |
|
ff3_skip_rate = float(self.ff3_skip_rate) if self.training else 0.0 |
|
src = src + self.sequence_dropout( |
|
self.balancer_ff3(self.feed_forward3(src)), ff3_skip_rate |
|
) |
|
|
|
src = self.balancer1(src) |
|
src = self.norm(src) |
|
|
|
src = self.bypass(src_orig, src) |
|
|
|
src = self.balancer2(src) |
|
src = self.whiten(src) |
|
|
|
return src |
|
|
|
|
|
class Zipformer2Encoder(nn.Module): |
|
r"""Zipformer2Encoder is a stack of N encoder layers |
|
|
|
Args: |
|
encoder_layer: an instance of the Zipformer2EncoderLayer() class (required). |
|
num_layers: the number of sub-encoder-layers in the encoder (required). |
|
pos_dim: the dimension for the relative positional encoding |
|
|
|
Examples:: |
|
>>> encoder_layer = Zipformer2EncoderLayer(embed_dim=512, nhead=8) |
|
>>> zipformer_encoder = Zipformer2Encoder(encoder_layer, num_layers=6) |
|
>>> src = torch.rand(10, 32, 512) |
|
>>> out = zipformer_encoder(src) |
|
""" |
|
|
|
def __init__( |
|
self, |
|
encoder_layer: nn.Module, |
|
num_layers: int, |
|
embed_dim: int, |
|
time_embed_dim: int, |
|
pos_dim: int, |
|
warmup_begin: float, |
|
warmup_end: float, |
|
initial_layerdrop_rate: float = 0.5, |
|
final_layerdrop_rate: float = 0.05, |
|
) -> None: |
|
super().__init__() |
|
self.encoder_pos = CompactRelPositionalEncoding( |
|
pos_dim, dropout_rate=0.15, length_factor=1.0 |
|
) |
|
if time_embed_dim != -1: |
|
self.time_emb = nn.Sequential( |
|
SwooshR(), |
|
nn.Linear(time_embed_dim, embed_dim), |
|
) |
|
else: |
|
self.time_emb = None |
|
|
|
self.layers = nn.ModuleList( |
|
[copy.deepcopy(encoder_layer) for i in range(num_layers)] |
|
) |
|
self.num_layers = num_layers |
|
|
|
assert 0 <= warmup_begin <= warmup_end |
|
|
|
delta = (1.0 / num_layers) * (warmup_end - warmup_begin) |
|
cur_begin = warmup_begin |
|
for i in range(num_layers): |
|
cur_end = cur_begin + delta |
|
self.layers[i].bypass.skip_rate = ScheduledFloat( |
|
(cur_begin, initial_layerdrop_rate), |
|
(cur_end, final_layerdrop_rate), |
|
default=0.0, |
|
) |
|
cur_begin = cur_end |
|
|
|
def forward( |
|
self, |
|
src: Tensor, |
|
time_emb: Optional[Tensor] = None, |
|
attn_mask: Optional[Tensor] = None, |
|
src_key_padding_mask: Optional[Tensor] = None, |
|
) -> Tensor: |
|
r"""Pass the input through the encoder layers in turn. |
|
|
|
Args: |
|
src: the sequence to the encoder (required): |
|
shape (seq_len, batch_size, embedding_dim). |
|
time_emb: the embedding representing the current timestep: |
|
shape (batch_size, embedding_dim) |
|
or (seq_len, batch_size, embedding_dim) . |
|
attn_mask: the attention mask, of shape (batch_size, seq_len, seq_len) |
|
or (seq_len, seq_len), interpreted as |
|
(batch_size, tgt_seq_len, src_seq_len) or (tgt_seq_len, src_seq_len). |
|
True means masked position. May be None. |
|
src_key_padding_mask: the mask for padding, of shape (batch_size, seq_len); |
|
True means masked position. May be None. |
|
|
|
Returns: a Tensor with the same shape as src. |
|
""" |
|
pos_emb = self.encoder_pos(src) |
|
if self.time_emb is not None: |
|
assert time_emb is not None |
|
time_emb = self.time_emb(time_emb) |
|
else: |
|
assert time_emb is None |
|
|
|
output = src |
|
|
|
for i, mod in enumerate(self.layers): |
|
output = mod( |
|
output, |
|
pos_emb, |
|
time_emb=time_emb, |
|
attn_mask=attn_mask, |
|
src_key_padding_mask=src_key_padding_mask, |
|
) |
|
|
|
return output |
|
|
|
|
|
class BypassModule(nn.Module): |
|
""" |
|
An nn.Module that implements a learnable bypass scale, and also randomized |
|
per-sequence layer-skipping. The bypass is limited during early stages of training |
|
to be close to "straight-through", i.e. to not do the bypass operation much |
|
initially, in order to force all the modules to learn something. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
embed_dim: int, |
|
skip_rate: FloatLike = 0.0, |
|
straight_through_rate: FloatLike = 0.0, |
|
scale_min: FloatLike = ScheduledFloat((0.0, 0.9), (20000.0, 0.2), default=0), |
|
scale_max: FloatLike = 1.0, |
|
): |
|
super().__init__() |
|
self.bypass_scale = nn.Parameter(torch.full((embed_dim,), 0.5)) |
|
self.skip_rate = copy.deepcopy(skip_rate) |
|
self.straight_through_rate = copy.deepcopy(straight_through_rate) |
|
self.scale_min = copy.deepcopy(scale_min) |
|
self.scale_max = copy.deepcopy(scale_max) |
|
|
|
def _get_bypass_scale(self, batch_size: int): |
|
|
|
|
|
|
|
|
|
if torch.jit.is_scripting() or torch.jit.is_tracing() or not self.training: |
|
return self.bypass_scale |
|
else: |
|
ans = limit_param_value( |
|
self.bypass_scale, |
|
min=float(self.scale_min), |
|
max=float(self.scale_max), |
|
) |
|
skip_rate = float(self.skip_rate) |
|
if skip_rate != 0.0: |
|
mask = torch.rand((batch_size, 1), device=ans.device) > skip_rate |
|
ans = ans * mask |
|
|
|
|
|
straight_through_rate = float(self.straight_through_rate) |
|
if straight_through_rate != 0.0: |
|
mask = ( |
|
torch.rand((batch_size, 1), device=ans.device) |
|
< straight_through_rate |
|
) |
|
ans = torch.maximum(ans, mask.to(ans.dtype)) |
|
return ans |
|
|
|
def forward(self, src_orig: Tensor, src: Tensor): |
|
""" |
|
Args: src_orig and src are both of shape (seq_len, batch_size, num_channels) |
|
Returns: something with the same shape as src and src_orig |
|
""" |
|
bypass_scale = self._get_bypass_scale(src.shape[1]) |
|
return src_orig + (src - src_orig) * bypass_scale |
|
|
|
|
|
class DownsampledZipformer2Encoder(nn.Module): |
|
r""" |
|
DownsampledZipformer2Encoder is a zipformer encoder evaluated at a reduced frame |
|
rate, after convolutional downsampling, and then upsampled again at the output, and |
|
combined with the origin input, so that the output has the same shape as the input. |
|
""" |
|
|
|
def __init__(self, encoder: nn.Module, dim: int, downsample: int): |
|
super(DownsampledZipformer2Encoder, self).__init__() |
|
self.downsample_factor = downsample |
|
self.downsample = SimpleDownsample(downsample) |
|
self.num_layers = encoder.num_layers |
|
self.encoder = encoder |
|
self.upsample = SimpleUpsample(downsample) |
|
self.out_combiner = BypassModule(dim, straight_through_rate=0) |
|
|
|
def forward( |
|
self, |
|
src: Tensor, |
|
time_emb: Optional[Tensor] = None, |
|
attn_mask: Optional[Tensor] = None, |
|
src_key_padding_mask: Optional[Tensor] = None, |
|
) -> Tensor: |
|
r"""Downsample, go through encoder, upsample. |
|
|
|
Args: |
|
src: the sequence to the encoder (required): |
|
shape (seq_len, batch_size, embedding_dim). |
|
time_emb: the embedding representing the current timestep: |
|
shape (batch_size, embedding_dim) |
|
or (seq_len, batch_size, embedding_dim) . |
|
feature_mask: something that broadcasts with src, that we'll multiply `src` |
|
by at every layer: if a Tensor, likely of shape |
|
(seq_len, batch_size, embedding_dim) |
|
attn_mask: the attention mask, of shape (batch_size, seq_len, seq_len) |
|
or (seq_len, seq_len), interpreted as |
|
(batch_size, tgt_seq_len, src_seq_len) or (tgt_seq_len, src_seq_len). |
|
True means masked position. May be None. |
|
src_key_padding_mask: the mask for padding, of shape (batch_size, seq_len); |
|
True means masked position. May be None. |
|
|
|
Returns: a Tensor with the same shape as src. |
|
""" |
|
src_orig = src |
|
src = self.downsample(src) |
|
ds = self.downsample_factor |
|
if time_emb is not None and time_emb.dim() == 3: |
|
time_emb = time_emb[::ds] |
|
if attn_mask is not None: |
|
attn_mask = attn_mask[::ds, ::ds] |
|
if src_key_padding_mask is not None: |
|
src_key_padding_mask = src_key_padding_mask[..., ::ds] |
|
|
|
src = self.encoder( |
|
src, |
|
time_emb=time_emb, |
|
attn_mask=attn_mask, |
|
src_key_padding_mask=src_key_padding_mask, |
|
) |
|
src = self.upsample(src) |
|
|
|
src = src[: src_orig.shape[0]] |
|
|
|
return self.out_combiner(src_orig, src) |
|
|
|
|
|
class SimpleDownsample(torch.nn.Module): |
|
""" |
|
Does downsampling with attention, by weighted sum. |
|
""" |
|
|
|
def __init__(self, downsample: int): |
|
super(SimpleDownsample, self).__init__() |
|
|
|
self.bias = nn.Parameter(torch.zeros(downsample)) |
|
|
|
self.name = None |
|
|
|
self.downsample = downsample |
|
|
|
def forward(self, src: Tensor) -> Tensor: |
|
""" |
|
x: (seq_len, batch_size, in_channels) |
|
Returns a tensor of shape |
|
( (seq_len+downsample-1)//downsample, batch_size, channels) |
|
""" |
|
(seq_len, batch_size, in_channels) = src.shape |
|
ds = self.downsample |
|
d_seq_len = (seq_len + ds - 1) // ds |
|
|
|
|
|
|
|
pad = d_seq_len * ds - seq_len |
|
src_extra = src[src.shape[0] - 1 :].expand(pad, src.shape[1], src.shape[2]) |
|
src = torch.cat((src, src_extra), dim=0) |
|
assert src.shape[0] == d_seq_len * ds |
|
|
|
src = src.reshape(d_seq_len, ds, batch_size, in_channels) |
|
|
|
weights = self.bias.softmax(dim=0) |
|
|
|
weights = weights.unsqueeze(-1).unsqueeze(-1) |
|
|
|
|
|
ans = (src * weights).sum(dim=1) |
|
|
|
return ans |
|
|
|
|
|
class SimpleUpsample(torch.nn.Module): |
|
""" |
|
A very simple form of upsampling that just repeats the input. |
|
""" |
|
|
|
def __init__(self, upsample: int): |
|
super(SimpleUpsample, self).__init__() |
|
self.upsample = upsample |
|
|
|
def forward(self, src: Tensor) -> Tensor: |
|
""" |
|
x: (seq_len, batch_size, num_channels) |
|
Returns a tensor of shape |
|
( (seq_len*upsample), batch_size, num_channels) |
|
""" |
|
upsample = self.upsample |
|
(seq_len, batch_size, num_channels) = src.shape |
|
src = src.unsqueeze(1).expand(seq_len, upsample, batch_size, num_channels) |
|
src = src.reshape(seq_len * upsample, batch_size, num_channels) |
|
return src |
|
|
|
|
|
class CompactRelPositionalEncoding(torch.nn.Module): |
|
""" |
|
Relative positional encoding module. This version is "compact" meaning it is able |
|
to encode the important information about the relative position in a relatively |
|
small number of dimensions. The goal is to make it so that small differences between |
|
large relative offsets (e.g. 1000 vs. 1001) make very little difference to the |
|
embedding. Such differences were potentially important when encoding absolute |
|
position, but not important when encoding relative position because there is now no |
|
need to compare two large offsets with each other. |
|
|
|
Our embedding works by projecting the interval [-infinity,infinity] to a finite |
|
interval using the atan() function, before doing the Fourier transform of that fixed |
|
interval. The atan() function would compress the "long tails" too small, making it |
|
hard to distinguish between different magnitudes of large offsets, so we use a |
|
logarithmic function to compress large offsets to a smaller range before applying |
|
atan(). Scalings are chosen in such a way that the embedding can clearly distinguish |
|
individual offsets as long as they are quite close to the origin, e.g. abs(offset) |
|
<= about sqrt(embedding_dim) |
|
|
|
|
|
Args: |
|
embed_dim: Embedding dimension. |
|
dropout_rate: Dropout rate. |
|
max_len: Maximum input length: just a heuristic for initialization. |
|
length_factor: a heuristic scale (should be >= 1.0) which, if larger, gives |
|
less weight to small differences of offset near the origin. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
embed_dim: int, |
|
dropout_rate: FloatLike, |
|
max_len: int = 1000, |
|
length_factor: float = 1.0, |
|
) -> None: |
|
"""Construct a CompactRelPositionalEncoding object.""" |
|
super(CompactRelPositionalEncoding, self).__init__() |
|
self.embed_dim = embed_dim |
|
assert embed_dim % 2 == 0, embed_dim |
|
self.dropout = Dropout2(dropout_rate) |
|
self.pe = None |
|
assert length_factor >= 1.0, length_factor |
|
self.length_factor = length_factor |
|
self.extend_pe(torch.tensor(0.0).expand(max_len)) |
|
|
|
def extend_pe(self, x: Tensor, left_context_len: int = 0) -> None: |
|
"""Reset the positional encodings.""" |
|
T = x.size(0) + left_context_len |
|
|
|
if self.pe is not None: |
|
|
|
|
|
if self.pe.size(0) >= T * 2 - 1: |
|
self.pe = self.pe.to(dtype=x.dtype, device=x.device) |
|
return |
|
|
|
|
|
x = torch.arange(-(T - 1), T, device=x.device).to(torch.float32).unsqueeze(1) |
|
|
|
freqs = 1 + torch.arange(self.embed_dim // 2, device=x.device) |
|
|
|
|
|
|
|
compression_length = self.embed_dim**0.5 |
|
|
|
|
|
|
|
|
|
x_compressed = ( |
|
compression_length |
|
* x.sign() |
|
* ((x.abs() + compression_length).log() - math.log(compression_length)) |
|
) |
|
|
|
|
|
|
|
|
|
|
|
length_scale = self.length_factor * self.embed_dim / (2.0 * math.pi) |
|
|
|
|
|
|
|
|
|
|
|
x_atan = (x_compressed / length_scale).atan() |
|
|
|
cosines = (x_atan * freqs).cos() |
|
sines = (x_atan * freqs).sin() |
|
|
|
pe = torch.zeros(x.shape[0], self.embed_dim, device=x.device) |
|
pe[:, 0::2] = cosines |
|
pe[:, 1::2] = sines |
|
pe[:, -1] = 1.0 |
|
|
|
self.pe = pe.to(dtype=x.dtype) |
|
|
|
def forward(self, x: Tensor, left_context_len: int = 0) -> Tensor: |
|
"""Create positional encoding. |
|
|
|
Args: |
|
x (Tensor): Input tensor (time, batch, `*`). |
|
left_context_len: (int): Length of cached left context. |
|
|
|
Returns: |
|
positional embedding, of shape (batch, left_context_len + 2*time-1, `*`). |
|
""" |
|
self.extend_pe(x, left_context_len) |
|
x_size_left = x.size(0) + left_context_len |
|
|
|
|
|
pos_emb = self.pe[ |
|
self.pe.size(0) // 2 |
|
- x_size_left |
|
+ 1 : self.pe.size(0) // 2 |
|
+ x.size(0), |
|
:, |
|
] |
|
pos_emb = pos_emb.unsqueeze(0) |
|
return self.dropout(pos_emb) |
|
|
|
|
|
class RelPositionMultiheadAttentionWeights(nn.Module): |
|
r"""Module that computes multi-head attention weights with relative position |
|
encoding. Various other modules consume the resulting attention weights: |
|
see, for example, the SimpleAttention module which allows you to compute |
|
conventional attention. |
|
|
|
This is a quite heavily modified from: "Transformer-XL: Attentive Language |
|
Models Beyond a Fixed-Length Context", |
|
we have to write up the differences. |
|
|
|
|
|
Args: |
|
embed_dim: number of channels at the input to this module, e.g. 256 |
|
pos_dim: dimension of the positional encoding vectors, e.g. 128. |
|
num_heads: number of heads to compute weights for, e.g. 8 |
|
query_head_dim: dimension of the query (and key), per head. e.g. 24. |
|
pos_head_dim: dimension of the projected positional encoding per head, e.g. 4. |
|
dropout: dropout probability for attn_output_weights. Default: 0.0. |
|
pos_emb_skip_rate: probability for skipping the pos_emb part of the scores on |
|
any given call to forward(), in training time. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
embed_dim: int, |
|
pos_dim: int, |
|
num_heads: int, |
|
query_head_dim: int, |
|
pos_head_dim: int, |
|
dropout: float = 0.0, |
|
pos_emb_skip_rate: FloatLike = ScheduledFloat((0.0, 0.5), (4000.0, 0.0)), |
|
) -> None: |
|
super().__init__() |
|
self.embed_dim = embed_dim |
|
self.num_heads = num_heads |
|
self.query_head_dim = query_head_dim |
|
self.pos_head_dim = pos_head_dim |
|
self.dropout = dropout |
|
self.pos_emb_skip_rate = copy.deepcopy(pos_emb_skip_rate) |
|
self.name = None |
|
|
|
key_head_dim = query_head_dim |
|
in_proj_dim = (query_head_dim + key_head_dim + pos_head_dim) * num_heads |
|
|
|
|
|
|
|
|
|
|
|
|
|
self.in_proj = ScaledLinear( |
|
embed_dim, |
|
in_proj_dim, |
|
bias=True, |
|
initial_scale=query_head_dim**-0.25, |
|
) |
|
|
|
self.whiten_keys = Whiten( |
|
num_groups=num_heads, |
|
whitening_limit=_whitening_schedule(3.0), |
|
prob=(0.025, 0.25), |
|
grad_scale=0.025, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.balance_keys = Balancer( |
|
key_head_dim * num_heads, |
|
channel_dim=-1, |
|
min_positive=0.4, |
|
max_positive=0.6, |
|
min_abs=0.0, |
|
max_abs=100.0, |
|
prob=0.025, |
|
) |
|
|
|
|
|
self.linear_pos = ScaledLinear( |
|
pos_dim, num_heads * pos_head_dim, bias=False, initial_scale=0.05 |
|
) |
|
|
|
|
|
self.copy_pos_query = Identity() |
|
self.copy_query = Identity() |
|
|
|
def forward( |
|
self, |
|
x: Tensor, |
|
pos_emb: Tensor, |
|
key_padding_mask: Optional[Tensor] = None, |
|
attn_mask: Optional[Tensor] = None, |
|
) -> Tensor: |
|
r""" |
|
Args: |
|
x: input of shape (seq_len, batch_size, embed_dim) |
|
pos_emb: Positional embedding tensor, of shape (1, 2*seq_len - 1, pos_dim) |
|
key_padding_mask: a bool tensor of shape (batch_size, seq_len). |
|
Positions that are True in this mask will be ignored as sources in the |
|
attention weighting. |
|
attn_mask: mask of shape (seq_len, seq_len) or |
|
(batch_size, seq_len, seq_len), interpreted as |
|
([batch_size,] tgt_seq_len, src_seq_len) |
|
saying which positions are allowed to attend to which other positions. |
|
Returns: |
|
a tensor of attention weights, of |
|
shape (hum_heads, batch_size, seq_len, seq_len) |
|
interpreted as (hum_heads, batch_size, tgt_seq_len, src_seq_len). |
|
""" |
|
x = self.in_proj(x) |
|
query_head_dim = self.query_head_dim |
|
pos_head_dim = self.pos_head_dim |
|
num_heads = self.num_heads |
|
|
|
seq_len, batch_size, _ = x.shape |
|
|
|
query_dim = query_head_dim * num_heads |
|
|
|
|
|
q = x[..., 0:query_dim] |
|
k = x[..., query_dim : 2 * query_dim] |
|
|
|
p = x[..., 2 * query_dim :] |
|
assert p.shape[-1] == num_heads * pos_head_dim, ( |
|
p.shape[-1], |
|
num_heads, |
|
pos_head_dim, |
|
) |
|
|
|
q = self.copy_query(q) |
|
k = self.whiten_keys(self.balance_keys(k)) |
|
p = self.copy_pos_query(p) |
|
|
|
q = q.reshape(seq_len, batch_size, num_heads, query_head_dim) |
|
p = p.reshape(seq_len, batch_size, num_heads, pos_head_dim) |
|
k = k.reshape(seq_len, batch_size, num_heads, query_head_dim) |
|
|
|
|
|
q = q.permute(2, 1, 0, 3) |
|
p = p.permute(2, 1, 0, 3) |
|
k = k.permute(2, 1, 3, 0) |
|
|
|
attn_scores = torch.matmul(q, k) |
|
|
|
use_pos_scores = False |
|
if torch.jit.is_scripting() or torch.jit.is_tracing(): |
|
|
|
use_pos_scores = True |
|
elif not self.training or random.random() >= float(self.pos_emb_skip_rate): |
|
use_pos_scores = True |
|
|
|
if use_pos_scores: |
|
pos_emb = self.linear_pos(pos_emb) |
|
seq_len2 = 2 * seq_len - 1 |
|
pos_emb = pos_emb.reshape(-1, seq_len2, num_heads, pos_head_dim).permute( |
|
2, 0, 3, 1 |
|
) |
|
|
|
|
|
|
|
|
|
pos_scores = torch.matmul(p, pos_emb) |
|
|
|
|
|
|
|
|
|
if torch.jit.is_tracing(): |
|
(num_heads, batch_size, time1, n) = pos_scores.shape |
|
rows = torch.arange(start=time1 - 1, end=-1, step=-1) |
|
cols = torch.arange(seq_len) |
|
rows = rows.repeat(batch_size * num_heads).unsqueeze(-1) |
|
indexes = rows + cols |
|
pos_scores = pos_scores.reshape(-1, n) |
|
pos_scores = torch.gather(pos_scores, dim=1, index=indexes) |
|
pos_scores = pos_scores.reshape(num_heads, batch_size, time1, seq_len) |
|
else: |
|
pos_scores = pos_scores.as_strided( |
|
(num_heads, batch_size, seq_len, seq_len), |
|
( |
|
pos_scores.stride(0), |
|
pos_scores.stride(1), |
|
pos_scores.stride(2) - pos_scores.stride(3), |
|
pos_scores.stride(3), |
|
), |
|
storage_offset=pos_scores.stride(3) * (seq_len - 1), |
|
) |
|
|
|
attn_scores = attn_scores + pos_scores |
|
|
|
if torch.jit.is_scripting() or torch.jit.is_tracing(): |
|
pass |
|
elif self.training and random.random() < 0.1: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
attn_scores = penalize_abs_values_gt( |
|
attn_scores, limit=25.0, penalty=1.0e-04, name=self.name |
|
) |
|
|
|
assert attn_scores.shape == (num_heads, batch_size, seq_len, seq_len) |
|
|
|
if attn_mask is not None: |
|
assert attn_mask.dtype == torch.bool |
|
|
|
|
|
|
|
|
|
attn_scores = attn_scores.masked_fill(attn_mask, -1000) |
|
|
|
if key_padding_mask is not None: |
|
assert key_padding_mask.shape == ( |
|
batch_size, |
|
seq_len, |
|
), key_padding_mask.shape |
|
attn_scores = attn_scores.masked_fill( |
|
key_padding_mask.unsqueeze(1), |
|
-1000, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
attn_weights = softmax(attn_scores, dim=-1) |
|
|
|
if torch.jit.is_scripting() or torch.jit.is_tracing(): |
|
pass |
|
elif random.random() < 0.001 and not self.training: |
|
self._print_attn_entropy(attn_weights) |
|
|
|
attn_weights = nn.functional.dropout( |
|
attn_weights, p=self.dropout, training=self.training |
|
) |
|
|
|
return attn_weights |
|
|
|
def _print_attn_entropy(self, attn_weights: Tensor): |
|
|
|
(num_heads, batch_size, seq_len, seq_len) = attn_weights.shape |
|
|
|
with torch.no_grad(): |
|
with torch.amp.autocast("cuda", enabled=False): |
|
attn_weights = attn_weights.to(torch.float32) |
|
attn_weights_entropy = ( |
|
-((attn_weights + 1.0e-20).log() * attn_weights) |
|
.sum(dim=-1) |
|
.mean(dim=(1, 2)) |
|
) |
|
logging.debug( |
|
f"name={self.name}, attn_weights_entropy = {attn_weights_entropy}" |
|
) |
|
|
|
|
|
class SelfAttention(nn.Module): |
|
""" |
|
The simplest possible attention module. This one works with already-computed |
|
attention weights, e.g. as computed by RelPositionMultiheadAttentionWeights. |
|
|
|
Args: |
|
embed_dim: the input and output embedding dimension |
|
num_heads: the number of attention heads |
|
value_head_dim: the value dimension per head |
|
""" |
|
|
|
def __init__( |
|
self, |
|
embed_dim: int, |
|
num_heads: int, |
|
value_head_dim: int, |
|
) -> None: |
|
super().__init__() |
|
self.in_proj = nn.Linear(embed_dim, num_heads * value_head_dim, bias=True) |
|
|
|
self.out_proj = ScaledLinear( |
|
num_heads * value_head_dim, |
|
embed_dim, |
|
bias=True, |
|
initial_scale=0.05, |
|
) |
|
|
|
self.whiten = Whiten( |
|
num_groups=1, |
|
whitening_limit=_whitening_schedule(7.5, ratio=3.0), |
|
prob=(0.025, 0.25), |
|
grad_scale=0.01, |
|
) |
|
|
|
def forward( |
|
self, |
|
x: Tensor, |
|
attn_weights: Tensor, |
|
) -> Tensor: |
|
""" |
|
Args: |
|
x: input tensor, of shape (seq_len, batch_size, embed_dim) |
|
attn_weights: a tensor of shape (num_heads, batch_size, seq_len, seq_len), |
|
with seq_len being interpreted as (tgt_seq_len, src_seq_len). Expect |
|
attn_weights.sum(dim=-1) == 1. |
|
Returns: |
|
a tensor with the same shape as x. |
|
""" |
|
(seq_len, batch_size, embed_dim) = x.shape |
|
num_heads = attn_weights.shape[0] |
|
assert attn_weights.shape == (num_heads, batch_size, seq_len, seq_len) |
|
|
|
x = self.in_proj(x) |
|
x = x.reshape(seq_len, batch_size, num_heads, -1).permute(2, 1, 0, 3) |
|
|
|
value_head_dim = x.shape[-1] |
|
|
|
|
|
x = torch.matmul(attn_weights, x) |
|
|
|
|
|
x = ( |
|
x.permute(2, 1, 0, 3) |
|
.contiguous() |
|
.view(seq_len, batch_size, num_heads * value_head_dim) |
|
) |
|
|
|
|
|
x = self.out_proj(x) |
|
x = self.whiten(x) |
|
|
|
return x |
|
|
|
|
|
class FeedforwardModule(nn.Module): |
|
"""Feedforward module in TTSZipformer model.""" |
|
|
|
def __init__(self, embed_dim: int, feedforward_dim: int, dropout: FloatLike): |
|
super(FeedforwardModule, self).__init__() |
|
self.in_proj = nn.Linear(embed_dim, feedforward_dim) |
|
|
|
self.hidden_balancer = Balancer( |
|
feedforward_dim, |
|
channel_dim=-1, |
|
min_positive=0.3, |
|
max_positive=1.0, |
|
min_abs=0.75, |
|
max_abs=5.0, |
|
) |
|
|
|
|
|
self.out_proj = ActivationDropoutAndLinear( |
|
feedforward_dim, |
|
embed_dim, |
|
activation="SwooshL", |
|
dropout_p=dropout, |
|
dropout_shared_dim=0, |
|
bias=True, |
|
initial_scale=0.1, |
|
) |
|
|
|
self.out_whiten = Whiten( |
|
num_groups=1, |
|
whitening_limit=_whitening_schedule(7.5), |
|
prob=(0.025, 0.25), |
|
grad_scale=0.01, |
|
) |
|
|
|
def forward(self, x: Tensor): |
|
x = self.in_proj(x) |
|
x = self.hidden_balancer(x) |
|
|
|
x = self.out_proj(x) |
|
x = self.out_whiten(x) |
|
return x |
|
|
|
|
|
class NonlinAttention(nn.Module): |
|
"""This is like the ConvolutionModule, but refactored so that we use multiplication |
|
by attention weights (borrowed from the attention module) in place of actual |
|
convolution. We also took out the second nonlinearity, the one after the |
|
attention mechanism. |
|
|
|
Args: |
|
channels (int): The number of channels of conv layers. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
channels: int, |
|
hidden_channels: int, |
|
) -> None: |
|
super().__init__() |
|
|
|
self.hidden_channels = hidden_channels |
|
|
|
self.in_proj = nn.Linear(channels, hidden_channels * 3, bias=True) |
|
|
|
|
|
|
|
|
|
|
|
self.balancer = Balancer( |
|
hidden_channels, |
|
channel_dim=-1, |
|
min_positive=ScheduledFloat((0.0, 0.25), (20000.0, 0.05)), |
|
max_positive=ScheduledFloat((0.0, 0.75), (20000.0, 0.95)), |
|
min_abs=0.5, |
|
max_abs=5.0, |
|
) |
|
self.tanh = nn.Tanh() |
|
|
|
self.identity1 = Identity() |
|
self.identity2 = Identity() |
|
self.identity3 = Identity() |
|
|
|
self.out_proj = ScaledLinear( |
|
hidden_channels, channels, bias=True, initial_scale=0.05 |
|
) |
|
|
|
self.whiten1 = Whiten( |
|
num_groups=1, |
|
whitening_limit=_whitening_schedule(5.0), |
|
prob=(0.025, 0.25), |
|
grad_scale=0.01, |
|
) |
|
|
|
self.whiten2 = Whiten( |
|
num_groups=1, |
|
whitening_limit=_whitening_schedule(5.0, ratio=3.0), |
|
prob=(0.025, 0.25), |
|
grad_scale=0.01, |
|
) |
|
|
|
def forward( |
|
self, |
|
x: Tensor, |
|
attn_weights: Tensor, |
|
) -> Tensor: |
|
""". |
|
Args: |
|
x: a Tensor of shape (seq_len, batch_size, num_channels) |
|
attn_weights: a Tensor of shape (num_heads, batch_size, seq_len, seq_len) |
|
Returns: |
|
a Tensor with the same shape as x |
|
""" |
|
x = self.in_proj(x) |
|
|
|
(seq_len, batch_size, _) = x.shape |
|
hidden_channels = self.hidden_channels |
|
|
|
s, x, y = x.chunk(3, dim=2) |
|
|
|
|
|
|
|
s = self.balancer(s) |
|
s = self.tanh(s) |
|
|
|
s = s.unsqueeze(-1).reshape(seq_len, batch_size, hidden_channels) |
|
x = self.whiten1(x) |
|
x = x * s |
|
x = self.identity1(x) |
|
|
|
(seq_len, batch_size, embed_dim) = x.shape |
|
num_heads = attn_weights.shape[0] |
|
assert attn_weights.shape == (num_heads, batch_size, seq_len, seq_len) |
|
|
|
x = x.reshape(seq_len, batch_size, num_heads, -1).permute(2, 1, 0, 3) |
|
|
|
x = torch.matmul(attn_weights, x) |
|
|
|
x = x.permute(2, 1, 0, 3).reshape(seq_len, batch_size, -1) |
|
|
|
y = self.identity2(y) |
|
x = x * y |
|
x = self.identity3(x) |
|
|
|
x = self.out_proj(x) |
|
x = self.whiten2(x) |
|
return x |
|
|
|
|
|
class ConvolutionModule(nn.Module): |
|
"""ConvolutionModule in Zipformer2 model. |
|
|
|
Args: |
|
channels (int): The number of channels of conv layers. |
|
kernel_size (int): Kernerl size of conv layers. |
|
bias (bool): Whether to use bias in conv layers (default=True). |
|
|
|
""" |
|
|
|
def __init__( |
|
self, |
|
channels: int, |
|
kernel_size: int, |
|
) -> None: |
|
"""Construct a ConvolutionModule object.""" |
|
super(ConvolutionModule, self).__init__() |
|
|
|
assert (kernel_size - 1) % 2 == 0 |
|
|
|
bottleneck_dim = channels |
|
|
|
self.in_proj = nn.Linear( |
|
channels, |
|
2 * bottleneck_dim, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.balancer1 = Balancer( |
|
bottleneck_dim, |
|
channel_dim=-1, |
|
min_positive=ScheduledFloat((0.0, 0.05), (8000.0, 0.025)), |
|
max_positive=1.0, |
|
min_abs=1.5, |
|
max_abs=ScheduledFloat((0.0, 5.0), (8000.0, 10.0), default=1.0), |
|
) |
|
|
|
self.activation1 = Identity() |
|
|
|
self.sigmoid = nn.Sigmoid() |
|
|
|
self.activation2 = Identity() |
|
|
|
assert kernel_size % 2 == 1 |
|
|
|
self.depthwise_conv = nn.Conv1d( |
|
in_channels=bottleneck_dim, |
|
out_channels=bottleneck_dim, |
|
groups=bottleneck_dim, |
|
kernel_size=kernel_size, |
|
padding=kernel_size // 2, |
|
) |
|
|
|
self.balancer2 = Balancer( |
|
bottleneck_dim, |
|
channel_dim=1, |
|
min_positive=ScheduledFloat((0.0, 0.1), (8000.0, 0.05)), |
|
max_positive=1.0, |
|
min_abs=ScheduledFloat((0.0, 0.2), (20000.0, 0.5)), |
|
max_abs=10.0, |
|
) |
|
|
|
self.whiten = Whiten( |
|
num_groups=1, |
|
whitening_limit=_whitening_schedule(7.5), |
|
prob=(0.025, 0.25), |
|
grad_scale=0.01, |
|
) |
|
|
|
self.out_proj = ActivationDropoutAndLinear( |
|
bottleneck_dim, |
|
channels, |
|
activation="SwooshR", |
|
dropout_p=0.0, |
|
initial_scale=0.05, |
|
) |
|
|
|
def forward( |
|
self, |
|
x: Tensor, |
|
src_key_padding_mask: Optional[Tensor] = None, |
|
) -> Tensor: |
|
"""Compute convolution module. |
|
|
|
Args: |
|
x: Input tensor (#time, batch, channels). |
|
src_key_padding_mask: the mask for the src keys per batch (optional): |
|
(batch, #time), contains True in masked positions. |
|
|
|
Returns: |
|
Tensor: Output tensor (#time, batch, channels). |
|
|
|
""" |
|
|
|
x = self.in_proj(x) |
|
|
|
x, s = x.chunk(2, dim=2) |
|
s = self.balancer1(s) |
|
s = self.sigmoid(s) |
|
x = self.activation1(x) |
|
x = x * s |
|
x = self.activation2(x) |
|
|
|
|
|
|
|
|
|
x = x.permute(1, 2, 0) |
|
|
|
if src_key_padding_mask is not None: |
|
x = x.masked_fill(src_key_padding_mask.unsqueeze(1).expand_as(x), 0.0) |
|
|
|
x = self.depthwise_conv(x) |
|
|
|
x = self.balancer2(x) |
|
x = x.permute(2, 0, 1) |
|
|
|
x = self.whiten(x) |
|
x = self.out_proj(x) |
|
|
|
return x |
|
|