Zvo / zipvoice /models /zipvoice.py
hynt's picture
update zipvoice demo
6f024ab
# Copyright 2024 Xiaomi Corp. (authors: Wei Kang
# Han Zhu)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Optional
import torch
import torch.nn as nn
from torch.nn.parallel import DistributedDataParallel as DDP
from zipvoice.models.modules.solver import EulerSolver
from zipvoice.models.modules.zipformer import TTSZipformer
from zipvoice.utils.common import (
condition_time_mask,
get_tokens_index,
make_pad_mask,
pad_labels,
prepare_avg_tokens_durations,
)
class ZipVoice(nn.Module):
"""The ZipVoice model."""
def __init__(
self,
fm_decoder_downsampling_factor: List[int] = [1, 2, 4, 2, 1],
fm_decoder_num_layers: List[int] = [2, 2, 4, 4, 4],
fm_decoder_cnn_module_kernel: List[int] = [31, 15, 7, 15, 31],
fm_decoder_feedforward_dim: int = 1536,
fm_decoder_num_heads: int = 4,
fm_decoder_dim: int = 512,
text_encoder_num_layers: int = 4,
text_encoder_feedforward_dim: int = 512,
text_encoder_cnn_module_kernel: int = 9,
text_encoder_num_heads: int = 4,
text_encoder_dim: int = 192,
time_embed_dim: int = 192,
text_embed_dim: int = 192,
query_head_dim: int = 32,
value_head_dim: int = 12,
pos_head_dim: int = 4,
pos_dim: int = 48,
feat_dim: int = 100,
vocab_size: int = 26,
pad_id: int = 0,
):
"""
Initialize the model with specified configuration parameters.
Args:
fm_decoder_downsampling_factor: List of downsampling factors for each layer
in the flow-matching decoder.
fm_decoder_num_layers: List of the number of layers for each block in the
flow-matching decoder.
fm_decoder_cnn_module_kernel: List of kernel sizes for CNN modules in the
flow-matching decoder.
fm_decoder_feedforward_dim: Dimension of the feedforward network in the
flow-matching decoder.
fm_decoder_num_heads: Number of attention heads in the flow-matching
decoder.
fm_decoder_dim: Hidden dimension of the flow-matching decoder.
text_encoder_num_layers: Number of layers in the text encoder.
text_encoder_feedforward_dim: Dimension of the feedforward network in the
text encoder.
text_encoder_cnn_module_kernel: Kernel size for the CNN module in the
text encoder.
text_encoder_num_heads: Number of attention heads in the text encoder.
text_encoder_dim: Hidden dimension of the text encoder.
time_embed_dim: Dimension of the time embedding.
text_embed_dim: Dimension of the text embedding.
query_head_dim: Dimension of the query attention head.
value_head_dim: Dimension of the value attention head.
pos_head_dim: Dimension of the position attention head.
pos_dim: Dimension of the positional encoding.
feat_dim: Dimension of the acoustic features.
vocab_size: Size of the vocabulary.
pad_id: ID used for padding tokens.
"""
super().__init__()
self.fm_decoder = TTSZipformer(
in_dim=feat_dim * 3,
out_dim=feat_dim,
downsampling_factor=fm_decoder_downsampling_factor,
num_encoder_layers=fm_decoder_num_layers,
cnn_module_kernel=fm_decoder_cnn_module_kernel,
encoder_dim=fm_decoder_dim,
feedforward_dim=fm_decoder_feedforward_dim,
num_heads=fm_decoder_num_heads,
query_head_dim=query_head_dim,
pos_head_dim=pos_head_dim,
value_head_dim=value_head_dim,
pos_dim=pos_dim,
use_time_embed=True,
time_embed_dim=time_embed_dim,
)
self.text_encoder = TTSZipformer(
in_dim=text_embed_dim,
out_dim=feat_dim,
downsampling_factor=1,
num_encoder_layers=text_encoder_num_layers,
cnn_module_kernel=text_encoder_cnn_module_kernel,
encoder_dim=text_encoder_dim,
feedforward_dim=text_encoder_feedforward_dim,
num_heads=text_encoder_num_heads,
query_head_dim=query_head_dim,
pos_head_dim=pos_head_dim,
value_head_dim=value_head_dim,
pos_dim=pos_dim,
use_time_embed=False,
)
self.feat_dim = feat_dim
self.text_embed_dim = text_embed_dim
self.pad_id = pad_id
self.embed = nn.Embedding(vocab_size, text_embed_dim)
self.solver = EulerSolver(self, func_name="forward_fm_decoder")
def forward_fm_decoder(
self,
t: torch.Tensor,
xt: torch.Tensor,
text_condition: torch.Tensor,
speech_condition: torch.Tensor,
padding_mask: Optional[torch.Tensor] = None,
guidance_scale: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""Compute velocity.
Args:
t: A tensor of shape (N, 1, 1) or a tensor of a float,
in the range of (0, 1).
xt: the input of the current timestep, including condition
embeddings and noisy acoustic features.
text_condition: the text condition embeddings, with the
shape (batch, seq_len, emb_dim).
speech_condition: the speech condition embeddings, with the
shape (batch, seq_len, emb_dim).
padding_mask: The mask for padding, True means masked
position, with the shape (N, T).
guidance_scale: The guidance scale in classifier-free guidance,
which is a tensor of shape (N, 1, 1) or a tensor of a float.
Returns:
predicted velocity, with the shape (batch, seq_len, emb_dim).
"""
xt = torch.cat([xt, text_condition, speech_condition], dim=2)
assert t.dim() in (0, 3)
# Handle t with the shape (N, 1, 1):
# squeeze the last dimension if it's size is 1.
while t.dim() > 1 and t.size(-1) == 1:
t = t.squeeze(-1)
# Handle t with a single value: expand to the size of batch size.
if t.dim() == 0:
t = t.repeat(xt.shape[0])
if guidance_scale is not None:
while guidance_scale.dim() > 1 and guidance_scale.size(-1) == 1:
guidance_scale = guidance_scale.squeeze(-1)
if guidance_scale.dim() == 0:
guidance_scale = guidance_scale.repeat(xt.shape[0])
vt = self.fm_decoder(
x=xt, t=t, padding_mask=padding_mask, guidance_scale=guidance_scale
)
else:
vt = self.fm_decoder(x=xt, t=t, padding_mask=padding_mask)
return vt
def forward_text_embed(
self,
tokens: List[List[int]],
):
"""
Get the text embeddings.
Args:
tokens: a list of list of token ids.
Returns:
embed: the text embeddings, shape (batch, seq_len, emb_dim).
tokens_lens: the length of each token sequence, shape (batch,).
"""
device = (
self.device if isinstance(self, DDP) else next(self.parameters()).device
)
tokens_padded = pad_labels(tokens, pad_id=self.pad_id, device=device) # (B, S)
embed = self.embed(tokens_padded) # (B, S, C)
tokens_lens = torch.tensor(
[len(token) for token in tokens], dtype=torch.int64, device=device
)
tokens_padding_mask = make_pad_mask(tokens_lens, embed.shape[1]) # (B, S)
embed = self.text_encoder(
x=embed, t=None, padding_mask=tokens_padding_mask
) # (B, S, C)
return embed, tokens_lens
def forward_text_condition(
self,
embed: torch.Tensor,
tokens_lens: torch.Tensor,
features_lens: torch.Tensor,
):
"""
Get the text condition with the same length of the acoustic feature.
Args:
embed: the text embeddings, shape (batch, token_seq_len, emb_dim).
tokens_lens: the length of each token sequence, shape (batch,).
features_lens: the length of each acoustic feature sequence,
shape (batch,).
Returns:
text_condition: the text condition, shape
(batch, feature_seq_len, emb_dim).
padding_mask: the padding mask of text condition, shape
(batch, feature_seq_len).
"""
num_frames = int(features_lens.max())
padding_mask = make_pad_mask(features_lens, max_len=num_frames) # (B, T)
tokens_durations = prepare_avg_tokens_durations(features_lens, tokens_lens)
tokens_index = get_tokens_index(tokens_durations, num_frames).to(
embed.device
) # (B, T)
text_condition = torch.gather(
embed,
dim=1,
index=tokens_index.unsqueeze(-1).expand(
embed.size(0), num_frames, embed.size(-1)
),
) # (B, T, F)
return text_condition, padding_mask
def forward_text_train(
self,
tokens: List[List[int]],
features_lens: torch.Tensor,
):
"""
Process text for training, given text tokens and real feature lengths.
"""
embed, tokens_lens = self.forward_text_embed(tokens)
text_condition, padding_mask = self.forward_text_condition(
embed, tokens_lens, features_lens
)
return (
text_condition,
padding_mask,
)
def forward_text_inference_gt_duration(
self,
tokens: List[List[int]],
features_lens: torch.Tensor,
prompt_tokens: List[List[int]],
prompt_features_lens: torch.Tensor,
):
"""
Process text for inference, given text tokens, real feature lengths and prompts.
"""
tokens = [
prompt_token + token for prompt_token, token in zip(prompt_tokens, tokens)
]
features_lens = prompt_features_lens + features_lens
embed, tokens_lens = self.forward_text_embed(tokens)
text_condition, padding_mask = self.forward_text_condition(
embed, tokens_lens, features_lens
)
return text_condition, padding_mask
def forward_text_inference_ratio_duration(
self,
tokens: List[List[int]],
prompt_tokens: List[List[int]],
prompt_features_lens: torch.Tensor,
speed: float,
):
"""
Process text for inference, given text tokens and prompts,
feature lengths are predicted with the ratio of token numbers.
"""
device = (
self.device if isinstance(self, DDP) else next(self.parameters()).device
)
cat_tokens = [
prompt_token + token for prompt_token, token in zip(prompt_tokens, tokens)
]
prompt_tokens_lens = torch.tensor(
[len(token) for token in prompt_tokens],
dtype=torch.int64,
device=device,
)
tokens_lens = torch.tensor(
[len(token) for token in tokens],
dtype=torch.int64,
device=device,
)
cat_embed, cat_tokens_lens = self.forward_text_embed(cat_tokens)
features_lens = prompt_features_lens + torch.ceil(
(prompt_features_lens / prompt_tokens_lens * tokens_lens / speed)
).to(dtype=torch.int64)
text_condition, padding_mask = self.forward_text_condition(
cat_embed, cat_tokens_lens, features_lens
)
return text_condition, padding_mask
def forward(
self,
tokens: List[List[int]],
features: torch.Tensor,
features_lens: torch.Tensor,
noise: torch.Tensor,
t: torch.Tensor,
condition_drop_ratio: float = 0.0,
) -> torch.Tensor:
"""Forward pass of the model for training.
Args:
tokens: a list of list of token ids.
features: the acoustic features, with the shape (batch, seq_len, feat_dim).
features_lens: the length of each acoustic feature sequence, shape (batch,).
noise: the intitial noise, with the shape (batch, seq_len, feat_dim).
t: the time step, with the shape (batch, 1, 1).
condition_drop_ratio: the ratio of dropped text condition.
Returns:
fm_loss: the flow-matching loss.
"""
(text_condition, padding_mask,) = self.forward_text_train(
tokens=tokens,
features_lens=features_lens,
)
speech_condition_mask = condition_time_mask(
features_lens=features_lens,
mask_percent=(0.7, 1.0),
max_len=features.size(1),
)
speech_condition = torch.where(speech_condition_mask.unsqueeze(-1), 0, features)
if condition_drop_ratio > 0.0:
drop_mask = (
torch.rand(text_condition.size(0), 1, 1).to(text_condition.device)
> condition_drop_ratio
)
text_condition = text_condition * drop_mask
xt = features * t + noise * (1 - t)
ut = features - noise # (B, T, F)
vt = self.forward_fm_decoder(
t=t,
xt=xt,
text_condition=text_condition,
speech_condition=speech_condition,
padding_mask=padding_mask,
)
loss_mask = speech_condition_mask & (~padding_mask)
fm_loss = torch.mean((vt[loss_mask] - ut[loss_mask]) ** 2)
return fm_loss
def sample(
self,
tokens: List[List[int]],
prompt_tokens: List[List[int]],
prompt_features: torch.Tensor,
prompt_features_lens: torch.Tensor,
features_lens: Optional[torch.Tensor] = None,
speed: float = 1.0,
t_shift: float = 1.0,
duration: str = "predict",
num_step: int = 5,
guidance_scale: float = 0.5,
) -> torch.Tensor:
"""
Generate acoustic features, given text tokens, prompts feature
and prompt transcription's text tokens.
Args:
tokens: a list of list of text tokens.
prompt_tokens: a list of list of prompt tokens.
prompt_features: the prompt feature with the shape
(batch_size, seq_len, feat_dim).
prompt_features_lens: the length of each prompt feature,
with the shape (batch_size,).
features_lens: the length of the predicted eature, with the
shape (batch_size,). It is used only when duration is "real".
duration: "real" or "predict". If "real", the predicted
feature length is given by features_lens.
num_step: the number of steps to use in the ODE solver.
guidance_scale: the guidance scale for classifier-free guidance.
"""
assert duration in ["real", "predict"]
if duration == "predict":
(
text_condition,
padding_mask,
) = self.forward_text_inference_ratio_duration(
tokens=tokens,
prompt_tokens=prompt_tokens,
prompt_features_lens=prompt_features_lens,
speed=speed,
)
else:
assert features_lens is not None
text_condition, padding_mask = self.forward_text_inference_gt_duration(
tokens=tokens,
features_lens=features_lens,
prompt_tokens=prompt_tokens,
prompt_features_lens=prompt_features_lens,
)
batch_size, num_frames, _ = text_condition.shape
speech_condition = torch.nn.functional.pad(
prompt_features, (0, 0, 0, num_frames - prompt_features.size(1))
) # (B, T, F)
# False means speech condition positions.
speech_condition_mask = make_pad_mask(prompt_features_lens, num_frames)
speech_condition = torch.where(
speech_condition_mask.unsqueeze(-1),
torch.zeros_like(speech_condition),
speech_condition,
)
x0 = torch.randn(
batch_size,
num_frames,
prompt_features.size(-1),
device=text_condition.device,
)
x1 = self.solver.sample(
x=x0,
text_condition=text_condition,
speech_condition=speech_condition,
padding_mask=padding_mask,
num_step=num_step,
guidance_scale=guidance_scale,
t_shift=t_shift,
)
x1_wo_prompt_lens = (~padding_mask).sum(-1) - prompt_features_lens
x1_prompt = torch.zeros(
x1.size(0), prompt_features_lens.max(), x1.size(2), device=x1.device
)
x1_wo_prompt = torch.zeros(
x1.size(0), x1_wo_prompt_lens.max(), x1.size(2), device=x1.device
)
for i in range(x1.size(0)):
x1_wo_prompt[i, : x1_wo_prompt_lens[i], :] = x1[
i,
prompt_features_lens[i] : prompt_features_lens[i]
+ x1_wo_prompt_lens[i],
]
x1_prompt[i, : prompt_features_lens[i], :] = x1[
i, : prompt_features_lens[i]
]
return x1_wo_prompt, x1_wo_prompt_lens, x1_prompt, prompt_features_lens
def sample_intermediate(
self,
tokens: List[List[int]],
features: torch.Tensor,
features_lens: torch.Tensor,
noise: torch.Tensor,
speech_condition_mask: torch.Tensor,
t_start: float,
t_end: float,
num_step: int = 1,
guidance_scale: torch.Tensor = None,
) -> torch.Tensor:
"""
Generate acoustic features in intermediate timesteps.
Args:
tokens: List of list of token ids.
features: The acoustic features, with the shape (batch, seq_len, feat_dim).
features_lens: The length of each acoustic feature sequence,
with the shape (batch,).
noise: The initial noise, with the shape (batch, seq_len, feat_dim).
speech_condition_mask: The mask for speech condition, True means
non-condition positions, with the shape (batch, seq_len).
t_start: The start timestep.
t_end: The end timestep.
num_step: The number of steps for sampling.
guidance_scale: The scale for classifier-free guidance inference,
with the shape (batch, 1, 1).
"""
(text_condition, padding_mask,) = self.forward_text_train(
tokens=tokens,
features_lens=features_lens,
)
speech_condition = torch.where(speech_condition_mask.unsqueeze(-1), 0, features)
x_t_end = self.solver.sample(
x=noise,
text_condition=text_condition,
speech_condition=speech_condition,
padding_mask=padding_mask,
num_step=num_step,
guidance_scale=guidance_scale,
t_start=t_start,
t_end=t_end,
)
x_t_end_lens = (~padding_mask).sum(-1)
return x_t_end, x_t_end_lens