Spaces:
Running
Running
print(">>> Starting app.py") | |
import torch | |
import torchvision | |
from PIL import Image | |
import torchvision.transforms as T | |
import numpy as np | |
import gradio as gr | |
# Load pretrained DeepLabV3 model once | |
model = torchvision.models.segmentation.deeplabv3_resnet101(pretrained=True) | |
model.eval() | |
# Define background removal function | |
def remove_bg(img): | |
# Preprocess image | |
transform = T.Compose([ | |
T.Resize(520), | |
T.ToTensor(), | |
T.Normalize(mean=[0.485, 0.456, 0.406], | |
std=[0.229, 0.224, 0.225]) | |
]) | |
input_tensor = transform(img).unsqueeze(0) | |
# Run inference | |
with torch.no_grad(): | |
output = model(input_tensor)['out'][0] | |
mask = output.argmax(0).byte().cpu().numpy() | |
# Resize mask to original image | |
img_np = np.array(img) | |
mask_resized = Image.fromarray(mask).resize((img_np.shape[1], img_np.shape[0])) | |
mask_np = np.array(mask_resized) | |
# Apply mask: keep object, set background white | |
removed_bg = img_np.copy() | |
removed_bg[mask_np == 0] = [255, 255, 255] | |
return Image.fromarray(removed_bg) | |
# Create Gradio interface | |
demo = gr.Interface( | |
fn=remove_bg, | |
inputs=gr.Image(type="pil"), | |
outputs=gr.Image(type="pil"), | |
title="Background Remover", | |
description="Upload an image and get the background removed instantly!" | |
) | |
if __name__ == "__main__": | |
demo.launch() | |