Spaces:
Running
Running
import gradio as gr | |
import torch | |
from transformers import AutoTokenizer, AutoModelForMultipleChoice, AutoModelForQuestionAnswering | |
import json | |
import collections # 如果您的 postprocess_qa_predictions 需要 | |
# 假設 utils_qa.py 在同一目錄下 (或者您需要將其函數複製過來或確保可導入) | |
# from utils_qa import postprocess_qa_predictions # 您可能需要完整路徑或將其放入 requirements.txt | |
# --- 模型和分詞器加載 --- | |
# 建議從 Hugging Face Hub 加載您已經上傳的模型 | |
# 這樣您的 Space 就不需要包含模型文件本身,保持輕量 | |
TOKENIZER_PATH = "bert-base-chinese" # 或者您上傳的分詞器路徑 | |
SELECTOR_MODEL_PATH = "TheWeeeed/chinese-paragraph-selector" # 替換為您上傳的段落選擇模型 ID | |
QA_MODEL_PATH = "TheWeeeed/chinese-extractive-qa" # 替換為您上傳的答案抽取模型 ID | |
try: | |
tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_PATH) | |
selector_model = AutoModelForMultipleChoice.from_pretrained(SELECTOR_MODEL_PATH) | |
qa_model = AutoModelForQuestionAnswering.from_pretrained(QA_MODEL_PATH) | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
selector_model.to(device) | |
selector_model.eval() | |
qa_model.to(device) | |
qa_model.eval() | |
models_loaded_successfully = True | |
print(f"模型和分詞器加載成功,使用設備: {device}") | |
except Exception as e: | |
models_loaded_successfully = False | |
error_message = f"加載模型或分詞器時出錯: {e}" | |
print(error_message) | |
# 在 Gradio 界面中,我們可以顯示這個錯誤信息 | |
# --- 從您的 inference_pipeline.py 中提取並調整以下函數 --- | |
def select_relevant_paragraph_gradio(question_text, candidate_paragraph_texts_str, model, tokenizer, device, max_seq_len): | |
# candidate_paragraph_texts_str 是一個由換行符分隔的字符串 | |
candidate_paragraph_texts = [p.strip() for p in candidate_paragraph_texts_str.split('\n') if p.strip()] | |
if not candidate_paragraph_texts: | |
return "請至少提供一個候選段落。", -1 | |
model.eval() | |
inputs_mc = [] | |
for p_text in candidate_paragraph_texts: | |
inputs_mc.append( | |
tokenizer( | |
question_text, p_text, add_special_tokens=True, max_length=max_seq_len, | |
padding="max_length", truncation=True, return_tensors="pt" | |
) | |
) | |
input_ids = torch.stack([inp["input_ids"].squeeze(0) for inp in inputs_mc]).unsqueeze(0).to(device) | |
attention_mask = torch.stack([inp["attention_mask"].squeeze(0) for inp in inputs_mc]).unsqueeze(0).to(device) | |
token_type_ids = None | |
if "token_type_ids" in inputs_mc[0]: | |
token_type_ids = torch.stack([inp["token_type_ids"].squeeze(0) for inp in inputs_mc]).unsqueeze(0).to(device) | |
with torch.no_grad(): | |
if token_type_ids is not None: | |
outputs = model(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids) | |
else: | |
outputs = model(input_ids=input_ids, attention_mask=attention_mask) | |
predicted_index = torch.argmax(outputs.logits, dim=1).item() | |
if predicted_index < len(candidate_paragraph_texts): | |
return candidate_paragraph_texts[predicted_index], predicted_index | |
else: | |
return "段落選擇索引錯誤。", -1 | |
def prepare_features_for_qa_inference_gradio(question_id, question_text, selected_context, tokenizer, max_seq_len, doc_stride): | |
# 這個函數需要從您的 inference_pipeline.py 中提取並適當修改 | |
# 它需要返回一個可以被 QA 模型使用的 Dataset 或 features 列表 | |
# 簡化版: | |
from datasets import Dataset # 需要在 requirements.txt 中 | |
qa_example_for_processing = {"id": [question_id], "question": [question_text], "context": [selected_context]} | |
temp_dataset = Dataset.from_dict(qa_example_for_processing) | |
pad_on_right = tokenizer.padding_side == "right" | |
qa_features = temp_dataset.map( | |
lambda examples: prepare_features_for_qa_inference( # 這是您 inference_pipeline.py 中的函數 | |
examples, tokenizer, pad_on_right, max_seq_len, doc_stride | |
), | |
batched=True, | |
remove_columns=temp_dataset.column_names | |
) | |
return qa_features # 返回 Dataset 對象 | |
# 您 inference_pipeline.py 中的 prepare_features_for_qa_inference 函數需要被複製到這裡 | |
# 或者確保它可以被導入 | |
def prepare_features_for_qa_inference(examples, tokenizer, pad_on_right, max_seq_len, doc_stride): | |
examples["question"] = [q.lstrip() if isinstance(q, str) else "" for q in examples["question"]] | |
questions = examples["question" if pad_on_right else "context"] | |
contexts = examples["context" if pad_on_right else "question"] | |
# Ensure questions and contexts are lists of strings, handle None by converting to empty string | |
questions = [q if isinstance(q, str) else "" for q in questions] | |
contexts = [c if isinstance(c, str) else "" for c in contexts] | |
tokenized_output = tokenizer( | |
questions, | |
contexts, | |
truncation="only_second" if pad_on_right else "only_first", | |
max_length=max_seq_len, | |
stride=doc_stride, | |
return_overflowing_tokens=True, | |
return_offsets_mapping=True, | |
padding="max_length", # This ensures all primary outputs are lists of numbers of fixed length | |
) | |
# The tokenizer with padding="max_length" should already produce lists of integers | |
# for input_ids, attention_mask, token_type_ids. | |
# The main risk of 'None' would be if the input strings were so problematic | |
# that the tokenizer failed internally in a way not producing standard padded output. | |
# However, standard tokenizers are quite robust with empty strings when padding is enabled. | |
# Let's directly create the structure we need for the output Dataset. | |
# `tokenized_output` is a BatchEncoding (dict-like). | |
# If `return_overflowing_tokens=True` and N features are generated from one example, | |
# then `tokenized_output['input_ids']` is a list of N lists. | |
processed_features = [] | |
num_generated_features = len(tokenized_output["input_ids"]) # Number of features due to overflow | |
# `sample_mapping` maps each generated feature back to its original example index in the input `examples` | |
sample_mapping = tokenized_output.pop("overflow_to_sample_mapping", list(range(len(examples["id"])))) | |
for i in range(num_generated_features): | |
feature = {} | |
original_example_index = sample_mapping[i] # Index of the original example this feature came from | |
# These should always be lists of integers due to padding="max_length" | |
feature["input_ids"] = tokenized_output["input_ids"][i] | |
if "attention_mask" in tokenized_output: | |
feature["attention_mask"] = tokenized_output["attention_mask"][i] | |
if "token_type_ids" in tokenized_output: | |
feature["token_type_ids"] = tokenized_output["token_type_ids"][i] | |
# These might not be strictly needed by the model's forward pass but are used by postprocessing | |
feature["example_id"] = examples["id"][original_example_index] | |
current_offset_mapping = tokenized_output["offset_mapping"][i] | |
sequence_ids = tokenized_output.sequence_ids(i) # Pass the index of the feature | |
context_idx_in_pair = 1 if pad_on_right else 0 | |
feature["offset_mapping"] = [ | |
offset if sequence_ids[k] == context_idx_in_pair else None | |
for k, offset in enumerate(current_offset_mapping) | |
] | |
processed_features.append(feature) | |
# The .map function expects a dictionary where keys are column names | |
# and values are lists of features for those columns. | |
# Since we are processing one original example at a time (batched=True on a Dataset of 1 row), | |
# and this one example can produce multiple features, `processed_features` is a list of dicts. | |
# We need to return a dictionary of lists. | |
if not processed_features: # Should not happen if tokenizer works, but as a safeguard | |
# Return structure with empty lists to match expected features by .map() | |
# This case indicates an issue with tokenizing the input example. | |
logger.error(f"No features generated for example ID {examples['id'][0]}. Input q: {examples['question'][0]}, c: {examples['context'][0]}") | |
return { | |
"input_ids": [], "token_type_ids": [], "attention_mask": [], | |
"offset_mapping": [], "example_id": [] | |
} | |
# Transpose the list of feature dictionaries into a dictionary of feature lists | |
# This is what the .map(batched=True) function expects as a return value | |
final_batch = {} | |
for key in processed_features[0].keys(): | |
final_batch[key] = [feature[key] for feature in processed_features] | |
for key_to_check in ["input_ids", "attention_mask", "token_type_ids"]: | |
if key_to_check in final_batch: | |
for i, lst in enumerate(final_batch[key_to_check]): | |
if lst is None: | |
raise ValueError(f"在 prepare_features_for_qa_inference 中,{key_to_check} 的第 {i} 個特徵列表為 None!") | |
if any(x is None for x in lst): | |
raise ValueError(f"在 prepare_features_for_qa_inference 中,{key_to_check} 的第 {i} 個特徵列表內部包含 None!內容: {lst[:20]}") | |
return final_batch | |
# postprocess_qa_predictions 函數也需要從 utils_qa.py 複製或導入 | |
# from utils_qa import postprocess_qa_predictions # 確保 utils_qa.py 在 Space 的環境中可用 | |
# --- Gradio 界面函數 --- | |
def two_stage_qa(question, candidate_paragraphs_str, max_seq_len_mc=512, max_seq_len_qa=384, doc_stride_qa=128, n_best_size=20, max_answer_length=100): | |
if not models_loaded_successfully: | |
return f"錯誤: {error_message}", "N/A", "N/A" | |
if not question.strip() or not candidate_paragraphs_str.strip(): | |
return "錯誤: 問題和候選段落不能為空。", "N/A", "N/A" | |
# 階段一 | |
selected_paragraph, selected_idx = select_relevant_paragraph_gradio( | |
question, candidate_paragraphs_str, selector_model, tokenizer, device, max_seq_len_mc | |
) | |
if selected_idx == -1: # 段落選擇出錯 | |
return f"段落選擇出錯: {selected_paragraph}", "N/A", selected_paragraph | |
# 階段二 | |
# 準備 QA 特徵 | |
qa_features_dataset = prepare_features_for_qa_inference_gradio( | |
"temp_id", question, selected_paragraph, tokenizer, max_seq_len_qa, doc_stride_qa | |
) | |
if len(qa_features_dataset) == 0: | |
return "錯誤: 無法為選定段落生成QA特徵 (可能段落太短或內容問題)。", f"選中的段落 (索引 {selected_idx}):\n{selected_paragraph}", "N/A" | |
# 創建 DataLoader | |
from transformers import default_data_collator # 需要導入 | |
qa_dataloader = DataLoader( | |
qa_features_dataset, collate_fn=default_data_collator, batch_size=8 # batch_size可以小一些 | |
) | |
all_start_logits = [] | |
all_end_logits = [] | |
for batch in qa_dataloader: | |
batch = {k: v.to(device) for k, v in batch.items()} | |
with torch.no_grad(): | |
outputs_qa = qa_model(**batch) | |
all_start_logits.append(outputs_qa.start_logits.cpu().numpy()) | |
all_end_logits.append(outputs_qa.end_logits.cpu().numpy()) | |
if not all_start_logits: | |
return "錯誤: QA模型沒有產生logits。", f"選中的段落 (索引 {selected_idx}):\n{selected_paragraph}", "N/A" | |
start_logits_np = np.concatenate(all_start_logits, axis=0) | |
end_logits_np = np.concatenate(all_end_logits, axis=0) | |
# 為了 postprocess_qa_predictions,我們需要原始的 example 數據 | |
# 它期望一個包含 "answers" 字段的 Dataset | |
def add_empty_answers(example): | |
example["answers"] = {"text": [], "answer_start": []} | |
return example | |
# temp_dataset 用於 postprocessing | |
original_example_for_postproc = {"id": ["temp_id"], "question": [question], "context": [selected_paragraph]} | |
original_dataset_for_postproc = Dataset.from_dict(original_example_for_postproc).map(add_empty_answers) | |
# 後處理 | |
# 確保 postprocess_qa_predictions 可用 | |
predictions_dict = postprocess_qa_predictions( | |
examples=original_dataset_for_postproc, # 原始的、包含 context 和空 answers 的 Dataset | |
features=qa_features_dataset, # 包含 offset_mapping 和 example_id 的 Dataset | |
predictions=(start_logits_np, end_logits_np), | |
version_2_with_negative=False, | |
n_best_size=n_best_size, | |
max_answer_length=max_answer_length, | |
null_score_diff_threshold=0.0, | |
output_dir=None, | |
prefix="gradio_predict", | |
is_world_process_zero=True | |
) | |
final_answer = predictions_dict.get("temp_id", "未能提取答案。") | |
return final_answer, f"選中的段落 (索引 {selected_idx}):\n{selected_paragraph}", predictions_dict | |
# --- 創建 Gradio 界面 --- | |
# 定義預設的問題和段落內容 | |
DEFAULT_QUESTION = "世界最高峰是什麼?" | |
DEFAULT_PARAGRAPHS = ( | |
"珠穆朗瑪峰是喜馬拉雅山脈的主峰,位於中國與尼泊爾邊界上,是世界海拔最高的山峰。\n" | |
"喬戈里峰,又稱K2,是喀喇崑崙山脈的主峰,海拔8611米,是世界第二高峰,位於中國與巴基斯坦邊界。\n" | |
"干城章嘉峰位於喜馬拉雅山脈中段尼泊爾和印度邊界線上,海拔8586米,為世界第三高峰。\n" | |
"洛子峰,海拔8516米,為世界第四高峰,位於珠穆朗瑪峰以南約3公里處,同屬喜馬拉雅山脈。" | |
) | |
iface = gr.Interface( | |
fn=two_stage_qa, # 您的兩階段問答處理函數 | |
inputs=[ | |
gr.Textbox( | |
lines=2, | |
placeholder="輸入您的問題...", | |
label="問題 (Question)", | |
value=DEFAULT_QUESTION # <--- 為問題設置預設值 | |
), | |
gr.Textbox( | |
lines=10, | |
placeholder="在此處輸入候選段落,每段一行...", | |
label="候選段落 (Candidate Paragraphs - One per line)", | |
value=DEFAULT_PARAGRAPHS # <--- 為段落設置預設值 | |
) | |
], | |
outputs=[ | |
gr.Textbox(label="預測答案 (Predicted Answer)"), | |
gr.Textbox(label="選中的相關段落 (Selected Relevant Paragraph)"), | |
gr.JSON(label="原始預測字典 (Raw Predictions Dict - for debugging)") | |
], | |
title="兩階段中文抽取式問答系統", | |
description="輸入一個問題和多個候選段落(每行一個段落)。系統會先選擇最相關的段落,然後從中抽取答案。", | |
allow_flagging="never" # 或者您希望的標記設置 | |
) | |
if __name__ == "__main__": | |
if models_loaded_successfully: # 確保模型已加載才啟動 | |
iface.launch() | |
else: | |
print(f"Gradio 應用無法啟動,因為模型加載失敗: {error_message if 'error_message' in locals() else '未知錯誤'}") | |